Changeset View
Changeset View
Standalone View
Standalone View
source/blender/draw/intern/shaders/common_smaa_lib.glsl
- This file was added.
| /** | |||||
| * Copyright (C) 2013 Jorge Jimenez (jorge@iryoku.com) | |||||
| * Copyright (C) 2013 Jose I. Echevarria (joseignacioechevarria@gmail.com) | |||||
| * Copyright (C) 2013 Belen Masia (bmasia@unizar.es) | |||||
| * Copyright (C) 2013 Fernando Navarro (fernandn@microsoft.com) | |||||
| * Copyright (C) 2013 Diego Gutierrez (diegog@unizar.es) | |||||
| * | |||||
| * Permission is hereby granted, free of charge, to any person obtaining a copy | |||||
| * this software and associated documentation files (the "Software"), to deal in | |||||
| * the Software without restriction, including without limitation the rights to | |||||
| * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies | |||||
| * of the Software, and to permit persons to whom the Software is furnished to | |||||
| * do so, subject to the following conditions: | |||||
| * | |||||
| * The above copyright notice and this permission notice shall be included in | |||||
| * all copies or substantial portions of the Software. As clarification, there | |||||
| * is no requirement that the copyright notice and permission be included in | |||||
| * binary distributions of the Software. | |||||
| * | |||||
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||||
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||||
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||||
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||||
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||||
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||||
| * SOFTWARE. | |||||
| */ | |||||
| /** | |||||
| * _______ ___ ___ ___ ___ | |||||
| * / || \/ | / \ / \ | |||||
| * | (---- | \ / | / ^ \ / ^ \ | |||||
| * \ \ | |\/| | / /_\ \ / /_\ \ | |||||
| * ----) | | | | | / _____ \ / _____ \ | |||||
| * |_______/ |__| |__| /__/ \__\ /__/ \__\ | |||||
| * | |||||
| * E N H A N C E D | |||||
| * S U B P I X E L M O R P H O L O G I C A L A N T I A L I A S I N G | |||||
| * | |||||
| * http://www.iryoku.com/smaa/ | |||||
| * | |||||
| * Hi, welcome aboard! | |||||
| * | |||||
| * Here you'll find instructions to get the shader up and running as fast as | |||||
| * possible. | |||||
| * | |||||
| * IMPORTANTE NOTICE: when updating, remember to update both this file and the | |||||
| * precomputed textures! They may change from version to version. | |||||
| * | |||||
| * The shader has three passes, chained together as follows: | |||||
| * | |||||
| * |input|------------------� | |||||
| * v | | |||||
| * [ SMAA*EdgeDetection ] | | |||||
| * v | | |||||
| * |edgesTex| | | |||||
| * v | | |||||
| * [ SMAABlendingWeightCalculation ] | | |||||
| * v | | |||||
| * |blendTex| | | |||||
| * v | | |||||
| * [ SMAANeighborhoodBlending ] <------� | |||||
| * v | |||||
| * |output| | |||||
| * | |||||
| * Note that each [pass] has its own vertex and pixel shader. Remember to use | |||||
| * oversized triangles instead of quads to avoid overshading along the | |||||
| * diagonal. | |||||
| * | |||||
| * You've three edge detection methods to choose from: luma, color or depth. | |||||
| * They represent different quality/performance and anti-aliasing/sharpness | |||||
| * tradeoffs, so our recommendation is for you to choose the one that best | |||||
| * suits your particular scenario: | |||||
| * | |||||
| * - Depth edge detection is usually the fastest but it may miss some edges. | |||||
| * | |||||
| * - Luma edge detection is usually more expensive than depth edge detection, | |||||
| * but catches visible edges that depth edge detection can miss. | |||||
| * | |||||
| * - Color edge detection is usually the most expensive one but catches | |||||
| * chroma-only edges. | |||||
| * | |||||
| * For quickstarters: just use luma edge detection. | |||||
| * | |||||
| * The general advice is to not rush the integration process and ensure each | |||||
| * step is done correctly (don't try to integrate SMAA T2x with predicated edge | |||||
| * detection from the start!). Ok then, let's go! | |||||
| * | |||||
| * 1. The first step is to create two RGBA temporal render targets for holding | |||||
| * |edgesTex| and |blendTex|. | |||||
| * | |||||
| * In DX10 or DX11, you can use a RG render target for the edges texture. | |||||
| * In the case of NVIDIA GPUs, using RG render targets seems to actually be | |||||
| * slower. | |||||
| * | |||||
| * On the Xbox 360, you can use the same render target for resolving both | |||||
| * |edgesTex| and |blendTex|, as they aren't needed simultaneously. | |||||
| * | |||||
| * 2. Both temporal render targets |edgesTex| and |blendTex| must be cleared | |||||
| * each frame. Do not forget to clear the alpha channel! | |||||
| * | |||||
| * 3. The next step is loading the two supporting precalculated textures, | |||||
| * 'areaTex' and 'searchTex'. You'll find them in the 'Textures' folder as | |||||
| * C++ headers, and also as regular DDS files. They'll be needed for the | |||||
| * 'SMAABlendingWeightCalculation' pass. | |||||
| * | |||||
| * If you use the C++ headers, be sure to load them in the format specified | |||||
| * inside of them. | |||||
| * | |||||
| * You can also compress 'areaTex' and 'searchTex' using BC5 and BC4 | |||||
| * respectively, if you have that option in your content processor pipeline. | |||||
| * When compressing then, you get a non-perceptible quality decrease, and a | |||||
| * marginal performance increase. | |||||
| * | |||||
| * 4. All samplers must be set to linear filtering and clamp. | |||||
| * | |||||
| * After you get the technique working, remember that 64-bit inputs have | |||||
| * half-rate linear filtering on GCN. | |||||
| * | |||||
| * If SMAA is applied to 64-bit color buffers, switching to point filtering | |||||
| * when accesing them will increase the performance. Search for | |||||
| * 'SMAASamplePoint' to see which textures may benefit from point | |||||
| * filtering, and where (which is basically the color input in the edge | |||||
| * detection and resolve passes). | |||||
| * | |||||
| * 5. All texture reads and buffer writes must be non-sRGB, with the exception | |||||
| * of the input read and the output write in | |||||
| * 'SMAANeighborhoodBlending' (and only in this pass!). If sRGB reads in | |||||
| * this last pass are not possible, the technique will work anyway, but | |||||
| * will perform antialiasing in gamma space. | |||||
| * | |||||
| * IMPORTANT: for best results the input read for the color/luma edge | |||||
| * detection should *NOT* be sRGB. | |||||
| * | |||||
| * 6. Before including SMAA.h you'll have to setup the render target metrics, | |||||
| * the target and any optional configuration defines. Optionally you can | |||||
| * use a preset. | |||||
| * | |||||
| * You have the following targets available: | |||||
| * SMAA_HLSL_3 | |||||
| * SMAA_HLSL_4 | |||||
| * SMAA_HLSL_4_1 | |||||
| * SMAA_GLSL_3 * | |||||
| * SMAA_GLSL_4 * | |||||
| * | |||||
| * * (See SMAA_INCLUDE_VS and SMAA_INCLUDE_PS below). | |||||
| * | |||||
| * And four presets: | |||||
| * SMAA_PRESET_LOW (%60 of the quality) | |||||
| * SMAA_PRESET_MEDIUM (%80 of the quality) | |||||
| * SMAA_PRESET_HIGH (%95 of the quality) | |||||
| * SMAA_PRESET_ULTRA (%99 of the quality) | |||||
| * | |||||
| * For example: | |||||
| * #define SMAA_RT_METRICS float4(1.0 / 1280.0, 1.0 / 720.0, 1280.0, 720.0) | |||||
| * #define SMAA_HLSL_4 | |||||
| * #define SMAA_PRESET_HIGH | |||||
| * #include "SMAA.h" | |||||
| * | |||||
| * Note that SMAA_RT_METRICS doesn't need to be a macro, it can be a | |||||
| * uniform variable. The code is designed to minimize the impact of not | |||||
| * using a constant value, but it is still better to hardcode it. | |||||
| * | |||||
| * Depending on how you encoded 'areaTex' and 'searchTex', you may have to | |||||
| * add (and customize) the following defines before including SMAA.h: | |||||
| * #define SMAA_AREATEX_SELECT(sample) sample.rg | |||||
| * #define SMAA_SEARCHTEX_SELECT(sample) sample.r | |||||
| * | |||||
| * If your engine is already using porting macros, you can define | |||||
| * SMAA_CUSTOM_SL, and define the porting functions by yourself. | |||||
| * | |||||
| * 7. Then, you'll have to setup the passes as indicated in the scheme above. | |||||
| * You can take a look into SMAA.fx, to see how we did it for our demo. | |||||
| * Checkout the function wrappers, you may want to copy-paste them! | |||||
| * | |||||
| * 8. It's recommended to validate the produced |edgesTex| and |blendTex|. | |||||
| * You can use a screenshot from your engine to compare the |edgesTex| | |||||
| * and |blendTex| produced inside of the engine with the results obtained | |||||
| * with the reference demo. | |||||
| * | |||||
| * 9. After you get the last pass to work, it's time to optimize. You'll have | |||||
| * to initialize a stencil buffer in the first pass (discard is already in | |||||
| * the code), then mask execution by using it the second pass. The last | |||||
| * pass should be executed in all pixels. | |||||
| * | |||||
| * | |||||
| * After this point you can choose to enable predicated thresholding, | |||||
| * temporal supersampling and motion blur integration: | |||||
| * | |||||
| * a) If you want to use predicated thresholding, take a look into | |||||
| * SMAA_PREDICATION; you'll need to pass an extra texture in the edge | |||||
| * detection pass. | |||||
| * | |||||
| * b) If you want to enable temporal supersampling (SMAA T2x): | |||||
| * | |||||
| * 1. The first step is to render using subpixel jitters. I won't go into | |||||
| * detail, but it's as simple as moving each vertex position in the | |||||
| * vertex shader, you can check how we do it in our DX10 demo. | |||||
| * | |||||
| * 2. Then, you must setup the temporal resolve. You may want to take a look | |||||
| * into SMAAResolve for resolving 2x modes. After you get it working, you'll | |||||
| * probably see ghosting everywhere. But fear not, you can enable the | |||||
| * CryENGINE temporal reprojection by setting the SMAA_REPROJECTION macro. | |||||
| * Check out SMAA_DECODE_VELOCITY if your velocity buffer is encoded. | |||||
| * | |||||
| * 3. The next step is to apply SMAA to each subpixel jittered frame, just as | |||||
| * done for 1x. | |||||
| * | |||||
| * 4. At this point you should already have something usable, but for best | |||||
| * results the proper area textures must be set depending on current jitter. | |||||
| * For this, the parameter 'subsampleIndices' of | |||||
| * 'SMAABlendingWeightCalculationPS' must be set as follows, for our T2x | |||||
| * mode: | |||||
| * | |||||
| * @SUBSAMPLE_INDICES | |||||
| * | |||||
| * | S# | Camera Jitter | subsampleIndices | | |||||
| * +----+------------------+---------------------+ | |||||
| * | 0 | ( 0.25, -0.25) | float4(1, 1, 1, 0) | | |||||
| * | 1 | (-0.25, 0.25) | float4(2, 2, 2, 0) | | |||||
| * | |||||
| * These jitter positions assume a bottom-to-top y axis. S# stands for the | |||||
| * sample number. | |||||
| * | |||||
| * More information about temporal supersampling here: | |||||
| * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf | |||||
| * | |||||
| * c) If you want to enable spatial multisampling (SMAA S2x): | |||||
| * | |||||
| * 1. The scene must be rendered using MSAA 2x. The MSAA 2x buffer must be | |||||
| * created with: | |||||
| * - DX10: see below (*) | |||||
| * - DX10.1: D3D10_STANDARD_MULTISAMPLE_PATTERN or | |||||
| * - DX11: D3D11_STANDARD_MULTISAMPLE_PATTERN | |||||
| * | |||||
| * This allows to ensure that the subsample order matches the table in | |||||
| * @SUBSAMPLE_INDICES. | |||||
| * | |||||
| * (*) In the case of DX10, we refer the reader to: | |||||
| * - SMAA::detectMSAAOrder and | |||||
| * - SMAA::msaaReorder | |||||
| * | |||||
| * These functions allow to match the standard multisample patterns by | |||||
| * detecting the subsample order for a specific GPU, and reordering | |||||
| * them appropriately. | |||||
| * | |||||
| * 2. A shader must be run to output each subsample into a separate buffer | |||||
| * (DX10 is required). You can use SMAASeparate for this purpose, or just do | |||||
| * it in an existing pass (for example, in the tone mapping pass, which has | |||||
| * the advantage of feeding tone mapped subsamples to SMAA, which will yield | |||||
| * better results). | |||||
| * | |||||
| * 3. The full SMAA 1x pipeline must be run for each separated buffer, storing | |||||
| * the results in the final buffer. The second run should alpha blend with | |||||
| * the existing final buffer using a blending factor of 0.5. | |||||
| * 'subsampleIndices' must be adjusted as in the SMAA T2x case (see point | |||||
| * b). | |||||
| * | |||||
| * d) If you want to enable temporal supersampling on top of SMAA S2x | |||||
| * (which actually is SMAA 4x): | |||||
| * | |||||
| * 1. SMAA 4x consists on temporally jittering SMAA S2x, so the first step is | |||||
| * to calculate SMAA S2x for current frame. In this case, 'subsampleIndices' | |||||
| * must be set as follows: | |||||
| * | |||||
| * | F# | S# | Camera Jitter | Net Jitter | subsampleIndices | | |||||
| * +----+----+--------------------+-------------------+----------------------+ | |||||
| * | 0 | 0 | ( 0.125, 0.125) | ( 0.375, -0.125) | float4(5, 3, 1, 3) | | |||||
| * | 0 | 1 | ( 0.125, 0.125) | (-0.125, 0.375) | float4(4, 6, 2, 3) | | |||||
| * +----+----+--------------------+-------------------+----------------------+ | |||||
| * | 1 | 2 | (-0.125, -0.125) | ( 0.125, -0.375) | float4(3, 5, 1, 4) | | |||||
| * | 1 | 3 | (-0.125, -0.125) | (-0.375, 0.125) | float4(6, 4, 2, 4) | | |||||
| * | |||||
| * These jitter positions assume a bottom-to-top y axis. F# stands for the | |||||
| * frame number. S# stands for the sample number. | |||||
| * | |||||
| * 2. After calculating SMAA S2x for current frame (with the new subsample | |||||
| * indices), previous frame must be reprojected as in SMAA T2x mode (see | |||||
| * point b). | |||||
| * | |||||
| * e) If motion blur is used, you may want to do the edge detection pass | |||||
| * together with motion blur. This has two advantages: | |||||
| * | |||||
| * 1. Pixels under heavy motion can be omitted from the edge detection process. | |||||
| * For these pixels we can just store "no edge", as motion blur will take | |||||
| * care of them. | |||||
| * 2. The center pixel tap is reused. | |||||
| * | |||||
| * Note that in this case depth testing should be used instead of stenciling, | |||||
| * as we have to write all the pixels in the motion blur pass. | |||||
| * | |||||
| * That's it! | |||||
| */ | |||||
| //----------------------------------------------------------------------------- | |||||
| // SMAA Presets | |||||
| /** | |||||
| * Note that if you use one of these presets, the following configuration | |||||
| * macros will be ignored if set in the "Configurable Defines" section. | |||||
| */ | |||||
| #if defined(SMAA_PRESET_LOW) | |||||
| # define SMAA_THRESHOLD 0.15 | |||||
| # define SMAA_MAX_SEARCH_STEPS 4 | |||||
| # define SMAA_DISABLE_DIAG_DETECTION | |||||
| # define SMAA_DISABLE_CORNER_DETECTION | |||||
| #elif defined(SMAA_PRESET_MEDIUM) | |||||
| # define SMAA_THRESHOLD 0.1 | |||||
| # define SMAA_MAX_SEARCH_STEPS 8 | |||||
| # define SMAA_DISABLE_DIAG_DETECTION | |||||
| # define SMAA_DISABLE_CORNER_DETECTION | |||||
| #elif defined(SMAA_PRESET_HIGH) | |||||
| # define SMAA_THRESHOLD 0.1 | |||||
| # define SMAA_MAX_SEARCH_STEPS 16 | |||||
| # define SMAA_MAX_SEARCH_STEPS_DIAG 8 | |||||
| # define SMAA_CORNER_ROUNDING 25 | |||||
| #elif defined(SMAA_PRESET_ULTRA) | |||||
| # define SMAA_THRESHOLD 0.05 | |||||
| # define SMAA_MAX_SEARCH_STEPS 32 | |||||
| # define SMAA_MAX_SEARCH_STEPS_DIAG 16 | |||||
| # define SMAA_CORNER_ROUNDING 50 | |||||
| #endif | |||||
| //----------------------------------------------------------------------------- | |||||
| // Configurable Defines | |||||
| /** | |||||
| * SMAA_THRESHOLD specifies the threshold or sensitivity to edges. | |||||
| * Lowering this value you will be able to detect more edges at the expense of | |||||
| * performance. | |||||
| * | |||||
| * Range: [0, 0.5] | |||||
| * 0.1 is a reasonable value, and allows to catch most visible edges. | |||||
| * 0.05 is a rather overkill value, that allows to catch 'em all. | |||||
| * | |||||
| * If temporal supersampling is used, 0.2 could be a reasonable value, as low | |||||
| * contrast edges are properly filtered by just 2x. | |||||
| */ | |||||
| #ifndef SMAA_THRESHOLD | |||||
| # define SMAA_THRESHOLD 0.1 | |||||
| #endif | |||||
| /** | |||||
| * SMAA_DEPTH_THRESHOLD specifies the threshold for depth edge detection. | |||||
| * | |||||
| * Range: depends on the depth range of the scene. | |||||
| */ | |||||
| #ifndef SMAA_DEPTH_THRESHOLD | |||||
| # define SMAA_DEPTH_THRESHOLD (0.1 * SMAA_THRESHOLD) | |||||
| #endif | |||||
| /** | |||||
| * SMAA_MAX_SEARCH_STEPS specifies the maximum steps performed in the | |||||
| * horizontal/vertical pattern searches, at each side of the pixel. | |||||
| * | |||||
| * In number of pixels, it's actually the double. So the maximum line length | |||||
| * perfectly handled by, for example 16, is 64 (by perfectly, we meant that | |||||
| * longer lines won't look as good, but still antialiased). | |||||
| * | |||||
| * Range: [0, 112] | |||||
| */ | |||||
| #ifndef SMAA_MAX_SEARCH_STEPS | |||||
| # define SMAA_MAX_SEARCH_STEPS 16 | |||||
| #endif | |||||
| /** | |||||
| * SMAA_MAX_SEARCH_STEPS_DIAG specifies the maximum steps performed in the | |||||
| * diagonal pattern searches, at each side of the pixel. In this case we jump | |||||
| * one pixel at time, instead of two. | |||||
| * | |||||
| * Range: [0, 20] | |||||
| * | |||||
| * On high-end machines it is cheap (between a 0.8x and 0.9x slower for 16 | |||||
| * steps), but it can have a significant impact on older machines. | |||||
| * | |||||
| * Define SMAA_DISABLE_DIAG_DETECTION to disable diagonal processing. | |||||
| */ | |||||
| #ifndef SMAA_MAX_SEARCH_STEPS_DIAG | |||||
| # define SMAA_MAX_SEARCH_STEPS_DIAG 8 | |||||
| #endif | |||||
| /** | |||||
| * SMAA_CORNER_ROUNDING specifies how much sharp corners will be rounded. | |||||
| * | |||||
| * Range: [0, 100] | |||||
| * | |||||
| * Define SMAA_DISABLE_CORNER_DETECTION to disable corner processing. | |||||
| */ | |||||
| #ifndef SMAA_CORNER_ROUNDING | |||||
| # define SMAA_CORNER_ROUNDING 25 | |||||
| #endif | |||||
| /** | |||||
| * If there is an neighbor edge that has SMAA_LOCAL_CONTRAST_FACTOR times | |||||
| * bigger contrast than current edge, current edge will be discarded. | |||||
| * | |||||
| * This allows to eliminate spurious crossing edges, and is based on the fact | |||||
| * that, if there is too much contrast in a direction, that will hide | |||||
| * perceptually contrast in the other neighbors. | |||||
| */ | |||||
| #ifndef SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR | |||||
| # define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR 2.0 | |||||
| #endif | |||||
| /** | |||||
| * Predicated thresholding allows to better preserve texture details and to | |||||
| * improve performance, by decreasing the number of detected edges using an | |||||
| * additional buffer like the light accumulation buffer, object ids or even the | |||||
| * depth buffer (the depth buffer usage may be limited to indoor or short range | |||||
| * scenes). | |||||
| * | |||||
| * It locally decreases the luma or color threshold if an edge is found in an | |||||
| * additional buffer (so the global threshold can be higher). | |||||
| * | |||||
| * This method was developed by Playstation EDGE MLAA team, and used in | |||||
| * Killzone 3, by using the light accumulation buffer. More information here: | |||||
| * http://iryoku.com/aacourse/downloads/06-MLAA-on-PS3.pptx | |||||
| */ | |||||
| #ifndef SMAA_PREDICATION | |||||
| # define SMAA_PREDICATION 0 | |||||
| #endif | |||||
| /** | |||||
| * Threshold to be used in the additional predication buffer. | |||||
| * | |||||
| * Range: depends on the input, so you'll have to find the magic number that | |||||
| * works for you. | |||||
| */ | |||||
| #ifndef SMAA_PREDICATION_THRESHOLD | |||||
| # define SMAA_PREDICATION_THRESHOLD 0.01 | |||||
| #endif | |||||
| /** | |||||
| * How much to scale the global threshold used for luma or color edge | |||||
| * detection when using predication. | |||||
| * | |||||
| * Range: [1, 5] | |||||
| */ | |||||
| #ifndef SMAA_PREDICATION_SCALE | |||||
| # define SMAA_PREDICATION_SCALE 2.0 | |||||
| #endif | |||||
| /** | |||||
| * How much to locally decrease the threshold. | |||||
| * | |||||
| * Range: [0, 1] | |||||
| */ | |||||
| #ifndef SMAA_PREDICATION_STRENGTH | |||||
| # define SMAA_PREDICATION_STRENGTH 0.4 | |||||
| #endif | |||||
| /** | |||||
| * Temporal reprojection allows to remove ghosting artifacts when using | |||||
| * temporal supersampling. We use the CryEngine 3 method which also introduces | |||||
| * velocity weighting. This feature is of extreme importance for totally | |||||
| * removing ghosting. More information here: | |||||
| * http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf | |||||
| * | |||||
| * Note that you'll need to setup a velocity buffer for enabling reprojection. | |||||
| * For static geometry, saving the previous depth buffer is a viable | |||||
| * alternative. | |||||
| */ | |||||
| #ifndef SMAA_REPROJECTION | |||||
| # define SMAA_REPROJECTION 0 | |||||
| #endif | |||||
| /** | |||||
| * SMAA_REPROJECTION_WEIGHT_SCALE controls the velocity weighting. It allows to | |||||
| * remove ghosting trails behind the moving object, which are not removed by | |||||
| * just using reprojection. Using low values will exhibit ghosting, while using | |||||
| * high values will disable temporal supersampling under motion. | |||||
| * | |||||
| * Behind the scenes, velocity weighting removes temporal supersampling when | |||||
| * the velocity of the subsamples differs (meaning they are different objects). | |||||
| * | |||||
| * Range: [0, 80] | |||||
| */ | |||||
| #ifndef SMAA_REPROJECTION_WEIGHT_SCALE | |||||
| # define SMAA_REPROJECTION_WEIGHT_SCALE 30.0 | |||||
| #endif | |||||
| /** | |||||
| * On some compilers, discard cannot be used in vertex shaders. Thus, they need | |||||
| * to be compiled separately. | |||||
| */ | |||||
| #ifndef SMAA_INCLUDE_VS | |||||
| # define SMAA_INCLUDE_VS 1 | |||||
| #endif | |||||
| #ifndef SMAA_INCLUDE_PS | |||||
| # define SMAA_INCLUDE_PS 1 | |||||
| #endif | |||||
| //----------------------------------------------------------------------------- | |||||
| // Texture Access Defines | |||||
| #ifndef SMAA_AREATEX_SELECT | |||||
| # if defined(SMAA_HLSL_3) | |||||
| # define SMAA_AREATEX_SELECT(sample) sample.ra | |||||
| # else | |||||
| # define SMAA_AREATEX_SELECT(sample) sample.rg | |||||
| # endif | |||||
| #endif | |||||
| #ifndef SMAA_SEARCHTEX_SELECT | |||||
| # define SMAA_SEARCHTEX_SELECT(sample) sample.r | |||||
| #endif | |||||
| #ifndef SMAA_DECODE_VELOCITY | |||||
| # define SMAA_DECODE_VELOCITY(sample) sample.rg | |||||
| #endif | |||||
| //----------------------------------------------------------------------------- | |||||
| // Non-Configurable Defines | |||||
| #define SMAA_AREATEX_MAX_DISTANCE 16 | |||||
| #define SMAA_AREATEX_MAX_DISTANCE_DIAG 20 | |||||
| #define SMAA_AREATEX_PIXEL_SIZE (1.0 / float2(160.0, 560.0)) | |||||
| #define SMAA_AREATEX_SUBTEX_SIZE (1.0 / 7.0) | |||||
| #define SMAA_SEARCHTEX_SIZE float2(66.0, 33.0) | |||||
| #define SMAA_SEARCHTEX_PACKED_SIZE float2(64.0, 16.0) | |||||
| #define SMAA_CORNER_ROUNDING_NORM (float(SMAA_CORNER_ROUNDING) / 100.0) | |||||
| //----------------------------------------------------------------------------- | |||||
| // Porting Functions | |||||
| #if defined(SMAA_HLSL_3) | |||||
| # define SMAATexture2D(tex) sampler2D tex | |||||
| # define SMAATexturePass2D(tex) tex | |||||
| # define SMAASampleLevelZero(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) | |||||
| # define SMAASampleLevelZeroPoint(tex, coord) tex2Dlod(tex, float4(coord, 0.0, 0.0)) | |||||
| # define SMAASampleLevelZeroOffset(tex, coord, offset) \ | |||||
| tex2Dlod(tex, float4(coord + offset * SMAA_RT_METRICS.xy, 0.0, 0.0)) | |||||
| # define SMAASample(tex, coord) tex2D(tex, coord) | |||||
| # define SMAASamplePoint(tex, coord) tex2D(tex, coord) | |||||
| # define SMAASampleOffset(tex, coord, offset) tex2D(tex, coord + offset * SMAA_RT_METRICS.xy) | |||||
| # define SMAA_FLATTEN [flatten] | |||||
| # define SMAA_BRANCH [branch] | |||||
| #endif | |||||
| #if defined(SMAA_HLSL_4) || defined(SMAA_HLSL_4_1) | |||||
| SamplerState LinearSampler | |||||
| { | |||||
| Filter = MIN_MAG_LINEAR_MIP_POINT; | |||||
| AddressU = Clamp; | |||||
| AddressV = Clamp; | |||||
| }; | |||||
| SamplerState PointSampler | |||||
| { | |||||
| Filter = MIN_MAG_MIP_POINT; | |||||
| AddressU = Clamp; | |||||
| AddressV = Clamp; | |||||
| }; | |||||
| # define SMAATexture2D(tex) Texture2D tex | |||||
| # define SMAATexturePass2D(tex) tex | |||||
| # define SMAASampleLevelZero(tex, coord) tex.SampleLevel(LinearSampler, coord, 0) | |||||
| # define SMAASampleLevelZeroPoint(tex, coord) tex.SampleLevel(PointSampler, coord, 0) | |||||
| # define SMAASampleLevelZeroOffset(tex, coord, offset) \ | |||||
| tex.SampleLevel(LinearSampler, coord, 0, offset) | |||||
| # define SMAASample(tex, coord) tex.Sample(LinearSampler, coord) | |||||
| # define SMAASamplePoint(tex, coord) tex.Sample(PointSampler, coord) | |||||
| # define SMAASampleOffset(tex, coord, offset) tex.Sample(LinearSampler, coord, offset) | |||||
| # define SMAA_FLATTEN [flatten] | |||||
| # define SMAA_BRANCH [branch] | |||||
| # define SMAATexture2DMS2(tex) Texture2DMS<float4, 2> tex | |||||
| # define SMAALoad(tex, pos, sample) tex.Load(pos, sample) | |||||
| # if defined(SMAA_HLSL_4_1) | |||||
| # define SMAAGather(tex, coord) tex.Gather(LinearSampler, coord, 0) | |||||
| # endif | |||||
| #endif | |||||
| #if defined(SMAA_GLSL_3) || defined(SMAA_GLSL_4) | |||||
| # define SMAATexture2D(tex) sampler2D tex | |||||
| # define SMAATexturePass2D(tex) tex | |||||
| # define SMAASampleLevelZero(tex, coord) textureLod(tex, coord, 0.0) | |||||
| # define SMAASampleLevelZeroPoint(tex, coord) textureLod(tex, coord, 0.0) | |||||
| # define SMAASampleLevelZeroOffset(tex, coord, offset) textureLodOffset(tex, coord, 0.0, offset) | |||||
| # define SMAASample(tex, coord) texture(tex, coord) | |||||
| # define SMAASamplePoint(tex, coord) texture(tex, coord) | |||||
| # define SMAASampleOffset(tex, coord, offset) texture(tex, coord, offset) | |||||
| # define SMAA_FLATTEN | |||||
| # define SMAA_BRANCH | |||||
| # define lerp(a, b, t) mix(a, b, t) | |||||
| # define saturate(a) clamp(a, 0.0, 1.0) | |||||
| # if defined(SMAA_GLSL_4) | |||||
| # define mad(a, b, c) fma(a, b, c) | |||||
| # define SMAAGather(tex, coord) textureGather(tex, coord) | |||||
| # else | |||||
| # define mad(a, b, c) (a * b + c) | |||||
| # endif | |||||
| # define float2 vec2 | |||||
| # define float3 vec3 | |||||
| # define float4 vec4 | |||||
| # define int2 ivec2 | |||||
| # define int3 ivec3 | |||||
| # define int4 ivec4 | |||||
| # define bool2 bvec2 | |||||
| # define bool3 bvec3 | |||||
| # define bool4 bvec4 | |||||
| #endif | |||||
| #if !defined(SMAA_HLSL_3) && !defined(SMAA_HLSL_4) && !defined(SMAA_HLSL_4_1) && \ | |||||
| !defined(SMAA_GLSL_3) && !defined(SMAA_GLSL_4) && !defined(SMAA_CUSTOM_SL) | |||||
| # error you must define the shading language: SMAA_HLSL_*, SMAA_GLSL_* or SMAA_CUSTOM_SL | |||||
| #endif | |||||
| //----------------------------------------------------------------------------- | |||||
| // Misc functions | |||||
| /** | |||||
| * Gathers current pixel, and the top-left neighbors. | |||||
| */ | |||||
| float3 SMAAGatherNeighbours(float2 texcoord, float4 offset[3], SMAATexture2D(tex)) | |||||
| { | |||||
| #ifdef SMAAGather | |||||
| return SMAAGather(tex, texcoord + SMAA_RT_METRICS.xy * float2(-0.5, -0.5)).grb; | |||||
| #else | |||||
| float P = SMAASamplePoint(tex, texcoord).r; | |||||
| float Pleft = SMAASamplePoint(tex, offset[0].xy).r; | |||||
| float Ptop = SMAASamplePoint(tex, offset[0].zw).r; | |||||
| return float3(P, Pleft, Ptop); | |||||
| #endif | |||||
| } | |||||
| /** | |||||
| * Adjusts the threshold by means of predication. | |||||
| */ | |||||
| float2 SMAACalculatePredicatedThreshold(float2 texcoord, | |||||
| float4 offset[3], | |||||
| SMAATexture2D(predicationTex)) | |||||
| { | |||||
| float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(predicationTex)); | |||||
| float2 delta = abs(neighbours.xx - neighbours.yz); | |||||
| float2 edges = step(SMAA_PREDICATION_THRESHOLD, delta); | |||||
| return SMAA_PREDICATION_SCALE * SMAA_THRESHOLD * (1.0 - SMAA_PREDICATION_STRENGTH * edges); | |||||
| } | |||||
| /** | |||||
| * Conditional move: | |||||
| */ | |||||
| void SMAAMovc(bool2 cond, inout float2 variable, float2 value) | |||||
| { | |||||
| SMAA_FLATTEN if (cond.x) variable.x = value.x; | |||||
| SMAA_FLATTEN if (cond.y) variable.y = value.y; | |||||
| } | |||||
| void SMAAMovc(bool4 cond, inout float4 variable, float4 value) | |||||
| { | |||||
| SMAAMovc(cond.xy, variable.xy, value.xy); | |||||
| SMAAMovc(cond.zw, variable.zw, value.zw); | |||||
| } | |||||
| #if SMAA_INCLUDE_VS | |||||
| //----------------------------------------------------------------------------- | |||||
| // Vertex Shaders | |||||
| /** | |||||
| * Edge Detection Vertex Shader | |||||
| */ | |||||
| void SMAAEdgeDetectionVS(float2 texcoord, out float4 offset[3]) | |||||
| { | |||||
| offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-1.0, 0.0, 0.0, -1.0), texcoord.xyxy); | |||||
| offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy); | |||||
| offset[2] = mad(SMAA_RT_METRICS.xyxy, float4(-2.0, 0.0, 0.0, -2.0), texcoord.xyxy); | |||||
| } | |||||
| /** | |||||
| * Blend Weight Calculation Vertex Shader | |||||
| */ | |||||
| void SMAABlendingWeightCalculationVS(float2 texcoord, out float2 pixcoord, out float4 offset[3]) | |||||
| { | |||||
| pixcoord = texcoord * SMAA_RT_METRICS.zw; | |||||
| // We will use these offsets for the searches later on (see @PSEUDO_GATHER4): | |||||
| offset[0] = mad(SMAA_RT_METRICS.xyxy, float4(-0.25, -0.125, 1.25, -0.125), texcoord.xyxy); | |||||
| offset[1] = mad(SMAA_RT_METRICS.xyxy, float4(-0.125, -0.25, -0.125, 1.25), texcoord.xyxy); | |||||
| // And these for the searches, they indicate the ends of the loops: | |||||
| offset[2] = mad(SMAA_RT_METRICS.xxyy, | |||||
| float4(-2.0, 2.0, -2.0, 2.0) * float(SMAA_MAX_SEARCH_STEPS), | |||||
| float4(offset[0].xz, offset[1].yw)); | |||||
| } | |||||
| /** | |||||
| * Neighborhood Blending Vertex Shader | |||||
| */ | |||||
| void SMAANeighborhoodBlendingVS(float2 texcoord, out float4 offset) | |||||
| { | |||||
| offset = mad(SMAA_RT_METRICS.xyxy, float4(1.0, 0.0, 0.0, 1.0), texcoord.xyxy); | |||||
| } | |||||
| #endif // SMAA_INCLUDE_VS | |||||
| #if SMAA_INCLUDE_PS | |||||
| //----------------------------------------------------------------------------- | |||||
| // Edge Detection Pixel Shaders (First Pass) | |||||
| /** | |||||
| * Luma Edge Detection | |||||
| * | |||||
| * IMPORTANT NOTICE: luma edge detection requires gamma-corrected colors, and | |||||
| * thus 'colorTex' should be a non-sRGB texture. | |||||
| */ | |||||
| float2 SMAALumaEdgeDetectionPS(float2 texcoord, | |||||
| float4 offset[3], | |||||
| SMAATexture2D(colorTex) | |||||
| # if SMAA_PREDICATION | |||||
| , | |||||
| SMAATexture2D(predicationTex) | |||||
| # endif | |||||
| ) | |||||
| { | |||||
| // Calculate the threshold: | |||||
| # if SMAA_PREDICATION | |||||
| float2 threshold = SMAACalculatePredicatedThreshold( | |||||
| texcoord, offset, SMAATexturePass2D(predicationTex)); | |||||
| # else | |||||
| float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); | |||||
| # endif | |||||
| // Calculate lumas: | |||||
| float4 weights = float4(0.2126 * 0.5, 0.7152 * 0.5, 0.0722 * 0.5, 0.5); | |||||
| float L = dot(SMAASamplePoint(colorTex, texcoord).rgba, weights); | |||||
| float Lleft = dot(SMAASamplePoint(colorTex, offset[0].xy).rgba, weights); | |||||
| float Ltop = dot(SMAASamplePoint(colorTex, offset[0].zw).rgba, weights); | |||||
| // We do the usual threshold: | |||||
| float4 delta; | |||||
| delta.xy = abs(L - float2(Lleft, Ltop)); | |||||
| float2 edges = step(threshold, delta.xy); | |||||
| // Then discard if there is no edge: | |||||
| if (dot(edges, float2(1.0, 1.0)) == 0.0) | |||||
| discard; | |||||
| // Calculate right and bottom deltas: | |||||
| float Lright = dot(SMAASamplePoint(colorTex, offset[1].xy).rgba, weights); | |||||
| float Lbottom = dot(SMAASamplePoint(colorTex, offset[1].zw).rgba, weights); | |||||
| delta.zw = abs(L - float2(Lright, Lbottom)); | |||||
| // Calculate the maximum delta in the direct neighborhood: | |||||
| float2 maxDelta = max(delta.xy, delta.zw); | |||||
| // Calculate left-left and top-top deltas: | |||||
| float Lleftleft = dot(SMAASamplePoint(colorTex, offset[2].xy).rgba, weights); | |||||
| float Ltoptop = dot(SMAASamplePoint(colorTex, offset[2].zw).rgba, weights); | |||||
| delta.zw = abs(float2(Lleft, Ltop) - float2(Lleftleft, Ltoptop)); | |||||
| // Calculate the final maximum delta: | |||||
| maxDelta = max(maxDelta.xy, delta.zw); | |||||
| float finalDelta = max(maxDelta.x, maxDelta.y); | |||||
| // Local contrast adaptation: | |||||
| # if !defined(SHADER_API_OPENGL) | |||||
| edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); | |||||
| # endif | |||||
| return edges; | |||||
| } | |||||
| /** | |||||
| * Color Edge Detection | |||||
| * | |||||
| * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and | |||||
| * thus 'colorTex' should be a non-sRGB texture. | |||||
| */ | |||||
| float2 SMAAColorEdgeDetectionPS(float2 texcoord, | |||||
| float4 offset[3], | |||||
| SMAATexture2D(colorTex) | |||||
| # if SMAA_PREDICATION | |||||
| , | |||||
| SMAATexture2D(predicationTex) | |||||
| # endif | |||||
| ) | |||||
| { | |||||
| // Calculate the threshold: | |||||
| # if SMAA_PREDICATION | |||||
| float2 threshold = SMAACalculatePredicatedThreshold(texcoord, offset, predicationTex); | |||||
| # else | |||||
| float2 threshold = float2(SMAA_THRESHOLD, SMAA_THRESHOLD); | |||||
| # endif | |||||
| // Calculate color deltas: | |||||
| float4 delta; | |||||
| float3 C = SMAASamplePoint(colorTex, texcoord).rgb; | |||||
| float3 Cleft = SMAASamplePoint(colorTex, offset[0].xy).rgb; | |||||
| float3 t = abs(C - Cleft); | |||||
| delta.x = max(max(t.r, t.g), t.b); | |||||
| float3 Ctop = SMAASamplePoint(colorTex, offset[0].zw).rgb; | |||||
| t = abs(C - Ctop); | |||||
| delta.y = max(max(t.r, t.g), t.b); | |||||
| // We do the usual threshold: | |||||
| float2 edges = step(threshold, delta.xy); | |||||
| // Then discard if there is no edge: | |||||
| if (dot(edges, float2(1.0, 1.0)) == 0.0) | |||||
| discard; | |||||
| // Calculate right and bottom deltas: | |||||
| float3 Cright = SMAASamplePoint(colorTex, offset[1].xy).rgb; | |||||
| t = abs(C - Cright); | |||||
| delta.z = max(max(t.r, t.g), t.b); | |||||
| float3 Cbottom = SMAASamplePoint(colorTex, offset[1].zw).rgb; | |||||
| t = abs(C - Cbottom); | |||||
| delta.w = max(max(t.r, t.g), t.b); | |||||
| // Calculate the maximum delta in the direct neighborhood: | |||||
| float2 maxDelta = max(delta.xy, delta.zw); | |||||
| // Calculate left-left and top-top deltas: | |||||
| float3 Cleftleft = SMAASamplePoint(colorTex, offset[2].xy).rgb; | |||||
| t = abs(C - Cleftleft); | |||||
| delta.z = max(max(t.r, t.g), t.b); | |||||
| float3 Ctoptop = SMAASamplePoint(colorTex, offset[2].zw).rgb; | |||||
| t = abs(C - Ctoptop); | |||||
| delta.w = max(max(t.r, t.g), t.b); | |||||
| // Calculate the final maximum delta: | |||||
| maxDelta = max(maxDelta.xy, delta.zw); | |||||
| float finalDelta = max(maxDelta.x, maxDelta.y); | |||||
| // Local contrast adaptation: | |||||
| # if !defined(SHADER_API_OPENGL) | |||||
| edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); | |||||
| # endif | |||||
| return edges; | |||||
| } | |||||
| /** | |||||
| * Depth Edge Detection | |||||
| */ | |||||
| float2 SMAADepthEdgeDetectionPS(float2 texcoord, float4 offset[3], SMAATexture2D(depthTex)) | |||||
| { | |||||
| float3 neighbours = SMAAGatherNeighbours(texcoord, offset, SMAATexturePass2D(depthTex)); | |||||
| float2 delta = abs(neighbours.xx - float2(neighbours.y, neighbours.z)); | |||||
| float2 edges = step(SMAA_DEPTH_THRESHOLD, delta); | |||||
| if (dot(edges, float2(1.0, 1.0)) == 0.0) | |||||
| discard; | |||||
| return edges; | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Diagonal Search Functions | |||||
| # if !defined(SMAA_DISABLE_DIAG_DETECTION) | |||||
| /** | |||||
| * Allows to decode two binary values from a bilinear-filtered access. | |||||
| */ | |||||
| float2 SMAADecodeDiagBilinearAccess(float2 e) | |||||
| { | |||||
| // Bilinear access for fetching 'e' have a 0.25 offset, and we are | |||||
| // interested in the R and G edges: | |||||
| // | |||||
| // +---G---+-------+ | |||||
| // | x o R x | | |||||
| // +-------+-------+ | |||||
| // | |||||
| // Then, if one of these edge is enabled: | |||||
| // Red: (0.75 * X + 0.25 * 1) => 0.25 or 1.0 | |||||
| // Green: (0.75 * 1 + 0.25 * X) => 0.75 or 1.0 | |||||
| // | |||||
| // This function will unpack the values (mad + mul + round): | |||||
| // wolframalpha.com: round(x * abs(5 * x - 5 * 0.75)) plot 0 to 1 | |||||
| e.r = e.r * abs(5.0 * e.r - 5.0 * 0.75); | |||||
| return round(e); | |||||
| } | |||||
| float4 SMAADecodeDiagBilinearAccess(float4 e) | |||||
| { | |||||
| e.rb = e.rb * abs(5.0 * e.rb - 5.0 * 0.75); | |||||
| return round(e); | |||||
| } | |||||
| /** | |||||
| * These functions allows to perform diagonal pattern searches. | |||||
| */ | |||||
| float2 SMAASearchDiag1(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) | |||||
| { | |||||
| float4 coord = float4(texcoord, -1.0, 1.0); | |||||
| float3 t = float3(SMAA_RT_METRICS.xy, 1.0); | |||||
| while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { | |||||
| coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); | |||||
| e = SMAASampleLevelZero(edgesTex, coord.xy).rg; | |||||
| coord.w = dot(e, float2(0.5, 0.5)); | |||||
| } | |||||
| return coord.zw; | |||||
| } | |||||
| float2 SMAASearchDiag2(SMAATexture2D(edgesTex), float2 texcoord, float2 dir, out float2 e) | |||||
| { | |||||
| float4 coord = float4(texcoord, -1.0, 1.0); | |||||
| coord.x += 0.25 * SMAA_RT_METRICS.x; // See @SearchDiag2Optimization | |||||
| float3 t = float3(SMAA_RT_METRICS.xy, 1.0); | |||||
| while (coord.z < float(SMAA_MAX_SEARCH_STEPS_DIAG - 1) && coord.w > 0.9) { | |||||
| coord.xyz = mad(t, float3(dir, 1.0), coord.xyz); | |||||
| // @SearchDiag2Optimization | |||||
| // Fetch both edges at once using bilinear filtering: | |||||
| e = SMAASampleLevelZero(edgesTex, coord.xy).rg; | |||||
| e = SMAADecodeDiagBilinearAccess(e); | |||||
| // Non-optimized version: | |||||
| // e.g = SMAASampleLevelZero(edgesTex, coord.xy).g; | |||||
| // e.r = SMAASampleLevelZeroOffset(edgesTex, coord.xy, int2(1, 0)).r; | |||||
| coord.w = dot(e, float2(0.5, 0.5)); | |||||
| } | |||||
| return coord.zw; | |||||
| } | |||||
| /** | |||||
| * Similar to SMAAArea, this calculates the area corresponding to a certain | |||||
| * diagonal distance and crossing edges 'e'. | |||||
| */ | |||||
| float2 SMAAAreaDiag(SMAATexture2D(areaTex), float2 dist, float2 e, float offset) | |||||
| { | |||||
| float2 texcoord = mad( | |||||
| float2(SMAA_AREATEX_MAX_DISTANCE_DIAG, SMAA_AREATEX_MAX_DISTANCE_DIAG), e, dist); | |||||
| // We do a scale and bias for mapping to texel space: | |||||
| texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); | |||||
| // Diagonal areas are on the second half of the texture: | |||||
| texcoord.x += 0.5; | |||||
| // Move to proper place, according to the subpixel offset: | |||||
| texcoord.y += SMAA_AREATEX_SUBTEX_SIZE * offset; | |||||
| // Do it! | |||||
| return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); | |||||
| } | |||||
| /** | |||||
| * This searches for diagonal patterns and returns the corresponding weights. | |||||
| */ | |||||
| float2 SMAACalculateDiagWeights(SMAATexture2D(edgesTex), | |||||
| SMAATexture2D(areaTex), | |||||
| float2 texcoord, | |||||
| float2 e, | |||||
| float4 subsampleIndices) | |||||
| { | |||||
| float2 weights = float2(0.0, 0.0); | |||||
| // Search for the line ends: | |||||
| float4 d; | |||||
| float2 end; | |||||
| if (e.r > 0.0) { | |||||
| d.xz = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, 1.0), end); | |||||
| d.x += float(end.y > 0.9); | |||||
| } | |||||
| else | |||||
| d.xz = float2(0.0, 0.0); | |||||
| d.yw = SMAASearchDiag1(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, -1.0), end); | |||||
| SMAA_BRANCH | |||||
| if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 | |||||
| // Fetch the crossing edges: | |||||
| float4 coords = mad( | |||||
| float4(-d.x + 0.25, d.x, d.y, -d.y - 0.25), SMAA_RT_METRICS.xyxy, texcoord.xyxy); | |||||
| float4 c; | |||||
| c.xy = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).rg; | |||||
| c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).rg; | |||||
| c.yxwz = SMAADecodeDiagBilinearAccess(c.xyzw); | |||||
| // Non-optimized version: | |||||
| // float4 coords = mad(float4(-d.x, d.x, d.y, -d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); | |||||
| // float4 c; | |||||
| // c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; | |||||
| // c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2( 0, 0)).r; | |||||
| // c.z = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, 0)).g; | |||||
| // c.w = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2( 1, -1)).r; | |||||
| // Merge crossing edges at each side into a single value: | |||||
| float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); | |||||
| // Remove the crossing edge if we didn't found the end of the line: | |||||
| SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); | |||||
| // Fetch the areas for this line: | |||||
| weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.z); | |||||
| } | |||||
| // Search for the line ends: | |||||
| d.xz = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(-1.0, -1.0), end); | |||||
| if (SMAASampleLevelZeroOffset(edgesTex, texcoord, int2(1, 0)).r > 0.0) { | |||||
| d.yw = SMAASearchDiag2(SMAATexturePass2D(edgesTex), texcoord, float2(1.0, 1.0), end); | |||||
| d.y += float(end.y > 0.9); | |||||
| } | |||||
| else | |||||
| d.yw = float2(0.0, 0.0); | |||||
| SMAA_BRANCH | |||||
| if (d.x + d.y > 2.0) { // d.x + d.y + 1 > 3 | |||||
| // Fetch the crossing edges: | |||||
| float4 coords = mad(float4(-d.x, -d.x, d.y, d.y), SMAA_RT_METRICS.xyxy, texcoord.xyxy); | |||||
| float4 c; | |||||
| c.x = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(-1, 0)).g; | |||||
| c.y = SMAASampleLevelZeroOffset(edgesTex, coords.xy, int2(0, -1)).r; | |||||
| c.zw = SMAASampleLevelZeroOffset(edgesTex, coords.zw, int2(1, 0)).gr; | |||||
| float2 cc = mad(float2(2.0, 2.0), c.xz, c.yw); | |||||
| // Remove the crossing edge if we didn't found the end of the line: | |||||
| SMAAMovc(bool2(step(0.9, d.zw)), cc, float2(0.0, 0.0)); | |||||
| // Fetch the areas for this line: | |||||
| weights += SMAAAreaDiag(SMAATexturePass2D(areaTex), d.xy, cc, subsampleIndices.w).gr; | |||||
| } | |||||
| return weights; | |||||
| } | |||||
| # endif | |||||
| //----------------------------------------------------------------------------- | |||||
| // Horizontal/Vertical Search Functions | |||||
| /** | |||||
| * This allows to determine how much length should we add in the last step | |||||
| * of the searches. It takes the bilinearly interpolated edge (see | |||||
| * @PSEUDO_GATHER4), and adds 0, 1 or 2, depending on which edges and | |||||
| * crossing edges are active. | |||||
| */ | |||||
| float SMAASearchLength(SMAATexture2D(searchTex), float2 e, float offset) | |||||
| { | |||||
| // The texture is flipped vertically, with left and right cases taking half | |||||
| // of the space horizontally: | |||||
| float2 scale = SMAA_SEARCHTEX_SIZE * float2(0.5, -1.0); | |||||
| float2 bias = SMAA_SEARCHTEX_SIZE * float2(offset, 1.0); | |||||
| // Scale and bias to access texel centers: | |||||
| scale += float2(-1.0, 1.0); | |||||
| bias += float2(0.5, -0.5); | |||||
| // Convert from pixel coordinates to texcoords: | |||||
| // (We use SMAA_SEARCHTEX_PACKED_SIZE because the texture is cropped) | |||||
| scale *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; | |||||
| bias *= 1.0 / SMAA_SEARCHTEX_PACKED_SIZE; | |||||
| // Lookup the search texture: | |||||
| return SMAA_SEARCHTEX_SELECT(SMAASampleLevelZero(searchTex, mad(scale, e, bias))); | |||||
| } | |||||
| /** | |||||
| * Horizontal/vertical search functions for the 2nd pass. | |||||
| */ | |||||
| float SMAASearchXLeft(SMAATexture2D(edgesTex), | |||||
| SMAATexture2D(searchTex), | |||||
| float2 texcoord, | |||||
| float end) | |||||
| { | |||||
| /** | |||||
| * @PSEUDO_GATHER4 | |||||
| * This texcoord has been offset by (-0.25, -0.125) in the vertex shader to | |||||
| * sample between edge, thus fetching four edges in a row. | |||||
| * Sampling with different offsets in each direction allows to disambiguate | |||||
| * which edges are active from the four fetched ones. | |||||
| */ | |||||
| float2 e = float2(0.0, 1.0); | |||||
| while (texcoord.x > end && e.g > 0.8281 && // Is there some edge not activated? | |||||
| e.r == 0.0) { // Or is there a crossing edge that breaks the line? | |||||
| e = SMAASampleLevelZero(edgesTex, texcoord).rg; | |||||
| texcoord = mad(-float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); | |||||
| } | |||||
| float offset = mad( | |||||
| -(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0), 3.25); | |||||
| return mad(SMAA_RT_METRICS.x, offset, texcoord.x); | |||||
| // Non-optimized version: | |||||
| // We correct the previous (-0.25, -0.125) offset we applied: | |||||
| // texcoord.x += 0.25 * SMAA_RT_METRICS.x; | |||||
| // The searches are bias by 1, so adjust the coords accordingly: | |||||
| // texcoord.x += SMAA_RT_METRICS.x; | |||||
| // Disambiguate the length added by the last step: | |||||
| // texcoord.x += 2.0 * SMAA_RT_METRICS.x; // Undo last step | |||||
| // texcoord.x -= SMAA_RT_METRICS.x * (255.0 / 127.0) * | |||||
| // SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.0); return mad(SMAA_RT_METRICS.x, offset, | |||||
| // texcoord.x); | |||||
| } | |||||
| float SMAASearchXRight(SMAATexture2D(edgesTex), | |||||
| SMAATexture2D(searchTex), | |||||
| float2 texcoord, | |||||
| float end) | |||||
| { | |||||
| float2 e = float2(0.0, 1.0); | |||||
| while (texcoord.x < end && e.g > 0.8281 && // Is there some edge not activated? | |||||
| e.r == 0.0) { // Or is there a crossing edge that breaks the line? | |||||
| e = SMAASampleLevelZero(edgesTex, texcoord).rg; | |||||
| texcoord = mad(float2(2.0, 0.0), SMAA_RT_METRICS.xy, texcoord); | |||||
| } | |||||
| float offset = mad( | |||||
| -(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e, 0.5), 3.25); | |||||
| return mad(-SMAA_RT_METRICS.x, offset, texcoord.x); | |||||
| } | |||||
| float SMAASearchYUp(SMAATexture2D(edgesTex), SMAATexture2D(searchTex), float2 texcoord, float end) | |||||
| { | |||||
| float2 e = float2(1.0, 0.0); | |||||
| while (texcoord.y > end && e.r > 0.8281 && // Is there some edge not activated? | |||||
| e.g == 0.0) { // Or is there a crossing edge that breaks the line? | |||||
| e = SMAASampleLevelZero(edgesTex, texcoord).rg; | |||||
| texcoord = mad(-float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); | |||||
| } | |||||
| float offset = mad( | |||||
| -(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.0), 3.25); | |||||
| return mad(SMAA_RT_METRICS.y, offset, texcoord.y); | |||||
| } | |||||
| float SMAASearchYDown(SMAATexture2D(edgesTex), | |||||
| SMAATexture2D(searchTex), | |||||
| float2 texcoord, | |||||
| float end) | |||||
| { | |||||
| float2 e = float2(1.0, 0.0); | |||||
| while (texcoord.y < end && e.r > 0.8281 && // Is there some edge not activated? | |||||
| e.g == 0.0) { // Or is there a crossing edge that breaks the line? | |||||
| e = SMAASampleLevelZero(edgesTex, texcoord).rg; | |||||
| texcoord = mad(float2(0.0, 2.0), SMAA_RT_METRICS.xy, texcoord); | |||||
| } | |||||
| float offset = mad( | |||||
| -(255.0 / 127.0), SMAASearchLength(SMAATexturePass2D(searchTex), e.gr, 0.5), 3.25); | |||||
| return mad(-SMAA_RT_METRICS.y, offset, texcoord.y); | |||||
| } | |||||
| /** | |||||
| * Ok, we have the distance and both crossing edges. So, what are the areas | |||||
| * at each side of current edge? | |||||
| */ | |||||
| float2 SMAAArea(SMAATexture2D(areaTex), float2 dist, float e1, float e2, float offset) | |||||
| { | |||||
| // Rounding prevents precision errors of bilinear filtering: | |||||
| float2 texcoord = mad(float2(SMAA_AREATEX_MAX_DISTANCE, SMAA_AREATEX_MAX_DISTANCE), | |||||
| round(4.0 * float2(e1, e2)), | |||||
| dist); | |||||
| // We do a scale and bias for mapping to texel space: | |||||
| texcoord = mad(SMAA_AREATEX_PIXEL_SIZE, texcoord, 0.5 * SMAA_AREATEX_PIXEL_SIZE); | |||||
| // Move to proper place, according to the subpixel offset: | |||||
| texcoord.y = mad(SMAA_AREATEX_SUBTEX_SIZE, offset, texcoord.y); | |||||
| // Do it! | |||||
| return SMAA_AREATEX_SELECT(SMAASampleLevelZero(areaTex, texcoord)); | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Corner Detection Functions | |||||
| void SMAADetectHorizontalCornerPattern(SMAATexture2D(edgesTex), | |||||
| inout float2 weights, | |||||
| float4 texcoord, | |||||
| float2 d) | |||||
| { | |||||
| # if !defined(SMAA_DISABLE_CORNER_DETECTION) | |||||
| float2 leftRight = step(d.xy, d.yx); | |||||
| float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; | |||||
| rounding /= leftRight.x + leftRight.y; // Reduce blending for pixels in the center of a line. | |||||
| float2 factor = float2(1.0, 1.0); | |||||
| factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, 1)).r; | |||||
| factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).r; | |||||
| factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(0, -2)).r; | |||||
| factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, -2)).r; | |||||
| weights *= saturate(factor); | |||||
| # endif | |||||
| } | |||||
| void SMAADetectVerticalCornerPattern(SMAATexture2D(edgesTex), | |||||
| inout float2 weights, | |||||
| float4 texcoord, | |||||
| float2 d) | |||||
| { | |||||
| # if !defined(SMAA_DISABLE_CORNER_DETECTION) | |||||
| float2 leftRight = step(d.xy, d.yx); | |||||
| float2 rounding = (1.0 - SMAA_CORNER_ROUNDING_NORM) * leftRight; | |||||
| rounding /= leftRight.x + leftRight.y; | |||||
| float2 factor = float2(1.0, 1.0); | |||||
| factor.x -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(1, 0)).g; | |||||
| factor.x -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(1, 1)).g; | |||||
| factor.y -= rounding.x * SMAASampleLevelZeroOffset(edgesTex, texcoord.xy, int2(-2, 0)).g; | |||||
| factor.y -= rounding.y * SMAASampleLevelZeroOffset(edgesTex, texcoord.zw, int2(-2, 1)).g; | |||||
| weights *= saturate(factor); | |||||
| # endif | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Blending Weight Calculation Pixel Shader (Second Pass) | |||||
| float4 SMAABlendingWeightCalculationPS(float2 texcoord, | |||||
| float2 pixcoord, | |||||
| float4 offset[3], | |||||
| SMAATexture2D(edgesTex), | |||||
| SMAATexture2D(areaTex), | |||||
| SMAATexture2D(searchTex), | |||||
| float4 subsampleIndices) | |||||
| { // Just pass zero for SMAA 1x, see @SUBSAMPLE_INDICES. | |||||
| float4 weights = float4(0.0, 0.0, 0.0, 0.0); | |||||
| float2 e = SMAASample(edgesTex, texcoord).rg; | |||||
| SMAA_BRANCH | |||||
| if (e.g > 0.0) { // Edge at north | |||||
| # if !defined(SMAA_DISABLE_DIAG_DETECTION) | |||||
| // Diagonals have both north and west edges, so searching for them in | |||||
| // one of the boundaries is enough. | |||||
| weights.rg = SMAACalculateDiagWeights( | |||||
| SMAATexturePass2D(edgesTex), SMAATexturePass2D(areaTex), texcoord, e, subsampleIndices); | |||||
| // We give priority to diagonals, so if we find a diagonal we skip | |||||
| // horizontal/vertical processing. | |||||
| SMAA_BRANCH | |||||
| if (weights.r == -weights.g) { // weights.r + weights.g == 0.0 | |||||
| # endif | |||||
| float2 d; | |||||
| // Find the distance to the left: | |||||
| float3 coords; | |||||
| coords.x = SMAASearchXLeft( | |||||
| SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].xy, offset[2].x); | |||||
| coords.y = | |||||
| offset[1].y; // offset[1].y = texcoord.y - 0.25 * SMAA_RT_METRICS.y (@CROSSING_OFFSET) | |||||
| d.x = coords.x; | |||||
| // Now fetch the left crossing edges, two at a time using bilinear | |||||
| // filtering. Sampling at -0.25 (see @CROSSING_OFFSET) enables to | |||||
| // discern what value each edge has: | |||||
| float e1 = SMAASampleLevelZero(edgesTex, coords.xy).r; | |||||
| // Find the distance to the right: | |||||
| coords.z = SMAASearchXRight( | |||||
| SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[0].zw, offset[2].y); | |||||
| d.y = coords.z; | |||||
| // We want the distances to be in pixel units (doing this here allow to | |||||
| // better interleave arithmetic and memory accesses): | |||||
| d = abs(round(mad(SMAA_RT_METRICS.zz, d, -pixcoord.xx))); | |||||
| // SMAAArea below needs a sqrt, as the areas texture is compressed | |||||
| // quadratically: | |||||
| float2 sqrt_d = sqrt(d); | |||||
| // Fetch the right crossing edges: | |||||
| float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.zy, int2(1, 0)).r; | |||||
| // Ok, we know how this pattern looks like, now it is time for getting | |||||
| // the actual area: | |||||
| weights.rg = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.y); | |||||
| // Fix corners: | |||||
| coords.y = texcoord.y; | |||||
| SMAADetectHorizontalCornerPattern(SMAATexturePass2D(edgesTex), weights.rg, coords.xyzy, d); | |||||
| # if !defined(SMAA_DISABLE_DIAG_DETECTION) | |||||
| } | |||||
| else | |||||
| e.r = 0.0; // Skip vertical processing. | |||||
| # endif | |||||
| } | |||||
| SMAA_BRANCH | |||||
| if (e.r > 0.0) { // Edge at west | |||||
| float2 d; | |||||
| // Find the distance to the top: | |||||
| float3 coords; | |||||
| coords.y = SMAASearchYUp( | |||||
| SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].xy, offset[2].z); | |||||
| coords.x = offset[0].x; // offset[1].x = texcoord.x - 0.25 * SMAA_RT_METRICS.x; | |||||
| d.x = coords.y; | |||||
| // Fetch the top crossing edges: | |||||
| float e1 = SMAASampleLevelZero(edgesTex, coords.xy).g; | |||||
| // Find the distance to the bottom: | |||||
| coords.z = SMAASearchYDown( | |||||
| SMAATexturePass2D(edgesTex), SMAATexturePass2D(searchTex), offset[1].zw, offset[2].w); | |||||
| d.y = coords.z; | |||||
| // We want the distances to be in pixel units: | |||||
| d = abs(round(mad(SMAA_RT_METRICS.ww, d, -pixcoord.yy))); | |||||
| // SMAAArea below needs a sqrt, as the areas texture is compressed | |||||
| // quadratically: | |||||
| float2 sqrt_d = sqrt(d); | |||||
| // Fetch the bottom crossing edges: | |||||
| float e2 = SMAASampleLevelZeroOffset(edgesTex, coords.xz, int2(0, 1)).g; | |||||
| // Get the area for this direction: | |||||
| weights.ba = SMAAArea(SMAATexturePass2D(areaTex), sqrt_d, e1, e2, subsampleIndices.x); | |||||
| // Fix corners: | |||||
| coords.x = texcoord.x; | |||||
| SMAADetectVerticalCornerPattern(SMAATexturePass2D(edgesTex), weights.ba, coords.xyxz, d); | |||||
| } | |||||
| return weights; | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Neighborhood Blending Pixel Shader (Third Pass) | |||||
| float4 SMAANeighborhoodBlendingPS(float2 texcoord, | |||||
| float4 offset, | |||||
| SMAATexture2D(colorTex), | |||||
| SMAATexture2D(blendTex) | |||||
| # if SMAA_REPROJECTION | |||||
| , | |||||
| SMAATexture2D(velocityTex) | |||||
| # endif | |||||
| ) | |||||
| { | |||||
| // Fetch the blending weights for current pixel: | |||||
| float4 a; | |||||
| a.x = SMAASample(blendTex, offset.xy).a; // Right | |||||
| a.y = SMAASample(blendTex, offset.zw).g; // Top | |||||
| a.wz = SMAASample(blendTex, texcoord).xz; // Bottom / Left | |||||
| // Is there any blending weight with a value greater than 0.0? | |||||
| SMAA_BRANCH | |||||
| if (dot(a, float4(1.0, 1.0, 1.0, 1.0)) < 1e-5) { | |||||
| float4 color = SMAASampleLevelZero(colorTex, texcoord); | |||||
| # if SMAA_REPROJECTION | |||||
| float2 velocity = SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, texcoord)); | |||||
| // Pack velocity into the alpha channel: | |||||
| color.a = sqrt(5.0 * length(velocity)); | |||||
| # endif | |||||
| return color; | |||||
| } | |||||
| else { | |||||
| bool h = max(a.x, a.z) > max(a.y, a.w); // max(horizontal) > max(vertical) | |||||
| // Calculate the blending offsets: | |||||
| float4 blendingOffset = float4(0.0, a.y, 0.0, a.w); | |||||
| float2 blendingWeight = a.yw; | |||||
| SMAAMovc(bool4(h, h, h, h), blendingOffset, float4(a.x, 0.0, a.z, 0.0)); | |||||
| SMAAMovc(bool2(h, h), blendingWeight, a.xz); | |||||
| blendingWeight /= dot(blendingWeight, float2(1.0, 1.0)); | |||||
| // Calculate the texture coordinates: | |||||
| float4 blendingCoord = mad( | |||||
| blendingOffset, float4(SMAA_RT_METRICS.xy, -SMAA_RT_METRICS.xy), texcoord.xyxy); | |||||
| // We exploit bilinear filtering to mix current pixel with the chosen | |||||
| // neighbor: | |||||
| float4 color = blendingWeight.x * SMAASampleLevelZero(colorTex, blendingCoord.xy); | |||||
| color += blendingWeight.y * SMAASampleLevelZero(colorTex, blendingCoord.zw); | |||||
| # if SMAA_REPROJECTION | |||||
| // Antialias velocity for proper reprojection in a later stage: | |||||
| float2 velocity = blendingWeight.x * | |||||
| SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.xy)); | |||||
| velocity += blendingWeight.y * | |||||
| SMAA_DECODE_VELOCITY(SMAASampleLevelZero(velocityTex, blendingCoord.zw)); | |||||
| // Pack velocity into the alpha channel: | |||||
| color.a = sqrt(5.0 * length(velocity)); | |||||
| # endif | |||||
| return color; | |||||
| } | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Temporal Resolve Pixel Shader (Optional Pass) | |||||
| float4 SMAAResolvePS(float2 texcoord, | |||||
| SMAATexture2D(currentColorTex), | |||||
| SMAATexture2D(previousColorTex) | |||||
| # if SMAA_REPROJECTION | |||||
| , | |||||
| SMAATexture2D(velocityTex) | |||||
| # endif | |||||
| ) | |||||
| { | |||||
| # if SMAA_REPROJECTION | |||||
| // Velocity is assumed to be calculated for motion blur, so we need to | |||||
| // inverse it for reprojection: | |||||
| float2 velocity = -SMAA_DECODE_VELOCITY(SMAASamplePoint(velocityTex, texcoord).rg); | |||||
| // Fetch current pixel: | |||||
| float4 current = SMAASamplePoint(currentColorTex, texcoord); | |||||
| // Reproject current coordinates and fetch previous pixel: | |||||
| float4 previous = SMAASamplePoint(previousColorTex, texcoord + velocity); | |||||
| // Attenuate the previous pixel if the velocity is different: | |||||
| float delta = abs(current.a * current.a - previous.a * previous.a) / 5.0; | |||||
| float weight = 0.5 * saturate(1.0 - sqrt(delta) * SMAA_REPROJECTION_WEIGHT_SCALE); | |||||
| // Blend the pixels according to the calculated weight: | |||||
| return lerp(current, previous, weight); | |||||
| # else | |||||
| // Just blend the pixels: | |||||
| float4 current = SMAASamplePoint(currentColorTex, texcoord); | |||||
| float4 previous = SMAASamplePoint(previousColorTex, texcoord); | |||||
| return lerp(current, previous, 0.5); | |||||
| # endif | |||||
| } | |||||
| //----------------------------------------------------------------------------- | |||||
| // Separate Multisamples Pixel Shader (Optional Pass) | |||||
| # ifdef SMAALoad | |||||
| void SMAASeparatePS(float4 position, | |||||
| float2 texcoord, | |||||
| out float4 target0, | |||||
| out float4 target1, | |||||
| SMAATexture2DMS2(colorTexMS)) | |||||
| { | |||||
| int2 pos = int2(position.xy); | |||||
| target0 = SMAALoad(colorTexMS, pos, 0); | |||||
| target1 = SMAALoad(colorTexMS, pos, 1); | |||||
| } | |||||
| # endif | |||||
| //----------------------------------------------------------------------------- | |||||
| #endif // SMAA_INCLUDE_PS | |||||