Changeset View
Changeset View
Standalone View
Standalone View
extern/bullet2/src/LinearMath/btAlignedObjectArray.h
| /* | /* | ||||
| Bullet Continuous Collision Detection and Physics Library | Bullet Continuous Collision Detection and Physics Library | ||||
| Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ | ||||
| This software is provided 'as-is', without any express or implied warranty. | This software is provided 'as-is', without any express or implied warranty. | ||||
| In no event will the authors be held liable for any damages arising from the use of this software. | In no event will the authors be held liable for any damages arising from the use of this software. | ||||
| Permission is granted to anyone to use this software for any purpose, | Permission is granted to anyone to use this software for any purpose, | ||||
| including commercial applications, and to alter it and redistribute it freely, | including commercial applications, and to alter it and redistribute it freely, | ||||
| subject to the following restrictions: | subject to the following restrictions: | ||||
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. | ||||
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. | ||||
| 3. This notice may not be removed or altered from any source distribution. | 3. This notice may not be removed or altered from any source distribution. | ||||
| */ | */ | ||||
| #ifndef BT_OBJECT_ARRAY__ | #ifndef BT_OBJECT_ARRAY__ | ||||
| #define BT_OBJECT_ARRAY__ | #define BT_OBJECT_ARRAY__ | ||||
| #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE | #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE | ||||
| #include "btAlignedAllocator.h" | #include "btAlignedAllocator.h" | ||||
| ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW | ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW | ||||
| ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors | ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors | ||||
| ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= | ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= | ||||
| ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and | ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and | ||||
| ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 | ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 | ||||
| #define BT_USE_PLACEMENT_NEW 1 | #define BT_USE_PLACEMENT_NEW 1 | ||||
| //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... | //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... | ||||
| #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful | #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful | ||||
| #ifdef BT_USE_MEMCPY | #ifdef BT_USE_MEMCPY | ||||
| #include <memory.h> | #include <memory.h> | ||||
| #include <string.h> | #include <string.h> | ||||
| #endif //BT_USE_MEMCPY | #endif //BT_USE_MEMCPY | ||||
| #ifdef BT_USE_PLACEMENT_NEW | #ifdef BT_USE_PLACEMENT_NEW | ||||
| #include <new> //for placement new | #include <new> //for placement new | ||||
| #endif //BT_USE_PLACEMENT_NEW | #endif //BT_USE_PLACEMENT_NEW | ||||
| // The register keyword is deprecated in C++11 so don't use it. | |||||
| #if __cplusplus > 199711L | |||||
| #define BT_REGISTER | |||||
| #else | |||||
| #define BT_REGISTER register | |||||
| #endif | |||||
| ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods | ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods | ||||
| ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data | ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data | ||||
| template <typename T> | template <typename T> | ||||
| //template <class T> | //template <class T> | ||||
| class btAlignedObjectArray | class btAlignedObjectArray | ||||
| { | { | ||||
| btAlignedAllocator<T , 16> m_allocator; | btAlignedAllocator<T, 16> m_allocator; | ||||
| int m_size; | int m_size; | ||||
| int m_capacity; | int m_capacity; | ||||
| T* m_data; | T* m_data; | ||||
| //PCK: added this line | //PCK: added this line | ||||
| bool m_ownsMemory; | bool m_ownsMemory; | ||||
| #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR | #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR | ||||
| public: | public: | ||||
| SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other) | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other) | ||||
| { | { | ||||
| copyFromArray(other); | copyFromArray(other); | ||||
| return *this; | return *this; | ||||
| } | } | ||||
| #else//BT_ALLOW_ARRAY_COPY_OPERATOR | #else //BT_ALLOW_ARRAY_COPY_OPERATOR | ||||
| private: | private: | ||||
| SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other); | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T>& other); | ||||
| #endif//BT_ALLOW_ARRAY_COPY_OPERATOR | #endif //BT_ALLOW_ARRAY_COPY_OPERATOR | ||||
| protected: | protected: | ||||
| SIMD_FORCE_INLINE int allocSize(int size) | SIMD_FORCE_INLINE int allocSize(int size) | ||||
| { | { | ||||
| return (size ? size*2 : 1); | return (size ? size * 2 : 1); | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void copy(int start,int end, T* dest) const | SIMD_FORCE_INLINE void copy(int start, int end, T* dest) const | ||||
| { | { | ||||
| int i; | int i; | ||||
| for (i=start;i<end;++i) | for (i = start; i < end; ++i) | ||||
| #ifdef BT_USE_PLACEMENT_NEW | #ifdef BT_USE_PLACEMENT_NEW | ||||
| new (&dest[i]) T(m_data[i]); | new (&dest[i]) T(m_data[i]); | ||||
| #else | #else | ||||
| dest[i] = m_data[i]; | dest[i] = m_data[i]; | ||||
| #endif //BT_USE_PLACEMENT_NEW | #endif //BT_USE_PLACEMENT_NEW | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void init() | SIMD_FORCE_INLINE void init() | ||||
| { | { | ||||
| //PCK: added this line | //PCK: added this line | ||||
| m_ownsMemory = true; | m_ownsMemory = true; | ||||
| m_data = 0; | m_data = 0; | ||||
| m_size = 0; | m_size = 0; | ||||
| m_capacity = 0; | m_capacity = 0; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void destroy(int first,int last) | SIMD_FORCE_INLINE void destroy(int first, int last) | ||||
| { | { | ||||
| int i; | int i; | ||||
| for (i=first; i<last;i++) | for (i = first; i < last; i++) | ||||
| { | { | ||||
| m_data[i].~T(); | m_data[i].~T(); | ||||
| } | } | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void* allocate(int size) | SIMD_FORCE_INLINE void* allocate(int size) | ||||
| { | { | ||||
| if (size) | if (size) | ||||
| return m_allocator.allocate(size); | return m_allocator.allocate(size); | ||||
| return 0; | return 0; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void deallocate() | SIMD_FORCE_INLINE void deallocate() | ||||
| { | { | ||||
| if(m_data) { | if (m_data) | ||||
| { | |||||
| //PCK: enclosed the deallocation in this block | //PCK: enclosed the deallocation in this block | ||||
| if (m_ownsMemory) | if (m_ownsMemory) | ||||
| { | { | ||||
| m_allocator.deallocate(m_data); | m_allocator.deallocate(m_data); | ||||
| } | } | ||||
| m_data = 0; | m_data = 0; | ||||
| } | } | ||||
| } | } | ||||
| public: | public: | ||||
| btAlignedObjectArray() | btAlignedObjectArray() | ||||
| { | { | ||||
| init(); | init(); | ||||
| } | } | ||||
| ~btAlignedObjectArray() | ~btAlignedObjectArray() | ||||
| { | { | ||||
| clear(); | clear(); | ||||
| } | } | ||||
| ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead. | ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead. | ||||
| btAlignedObjectArray(const btAlignedObjectArray& otherArray) | btAlignedObjectArray(const btAlignedObjectArray& otherArray) | ||||
| { | { | ||||
| init(); | init(); | ||||
| int otherSize = otherArray.size(); | int otherSize = otherArray.size(); | ||||
| resize (otherSize); | resize(otherSize); | ||||
| otherArray.copy(0, otherSize, m_data); | otherArray.copy(0, otherSize, m_data); | ||||
| } | } | ||||
| /// return the number of elements in the array | /// return the number of elements in the array | ||||
| SIMD_FORCE_INLINE int size() const | SIMD_FORCE_INLINE int size() const | ||||
| { | { | ||||
| return m_size; | return m_size; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE const T& at(int n) const | SIMD_FORCE_INLINE const T& at(int n) const | ||||
| { | { | ||||
| btAssert(n>=0); | btAssert(n >= 0); | ||||
| btAssert(n<size()); | btAssert(n < size()); | ||||
| return m_data[n]; | return m_data[n]; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE T& at(int n) | SIMD_FORCE_INLINE T& at(int n) | ||||
| { | { | ||||
| btAssert(n>=0); | btAssert(n >= 0); | ||||
| btAssert(n<size()); | btAssert(n < size()); | ||||
| return m_data[n]; | return m_data[n]; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE const T& operator[](int n) const | SIMD_FORCE_INLINE const T& operator[](int n) const | ||||
| { | { | ||||
| btAssert(n>=0); | btAssert(n >= 0); | ||||
| btAssert(n<size()); | btAssert(n < size()); | ||||
| return m_data[n]; | return m_data[n]; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE T& operator[](int n) | SIMD_FORCE_INLINE T& operator[](int n) | ||||
| { | { | ||||
| btAssert(n>=0); | btAssert(n >= 0); | ||||
| btAssert(n<size()); | btAssert(n < size()); | ||||
| return m_data[n]; | return m_data[n]; | ||||
| } | } | ||||
| ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. | ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. | ||||
| SIMD_FORCE_INLINE void clear() | SIMD_FORCE_INLINE void clear() | ||||
| { | { | ||||
| destroy(0,size()); | destroy(0, size()); | ||||
| deallocate(); | deallocate(); | ||||
| init(); | init(); | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void pop_back() | SIMD_FORCE_INLINE void pop_back() | ||||
| { | { | ||||
| btAssert(m_size>0); | btAssert(m_size > 0); | ||||
| m_size--; | m_size--; | ||||
| m_data[m_size].~T(); | m_data[m_size].~T(); | ||||
| } | } | ||||
| ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. | ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. | ||||
| ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. | ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. | ||||
| SIMD_FORCE_INLINE void resizeNoInitialize(int newsize) | SIMD_FORCE_INLINE void resizeNoInitialize(int newsize) | ||||
| { | { | ||||
| if (newsize > size()) | if (newsize > size()) | ||||
| { | { | ||||
| reserve(newsize); | reserve(newsize); | ||||
| } | } | ||||
| m_size = newsize; | m_size = newsize; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void resize(int newsize, const T& fillData=T()) | SIMD_FORCE_INLINE void resize(int newsize, const T& fillData = T()) | ||||
| { | { | ||||
| const BT_REGISTER int curSize = size(); | const int curSize = size(); | ||||
| if (newsize < curSize) | if (newsize < curSize) | ||||
| { | { | ||||
| for(int i = newsize; i < curSize; i++) | for (int i = newsize; i < curSize; i++) | ||||
| { | { | ||||
| m_data[i].~T(); | m_data[i].~T(); | ||||
| } | } | ||||
| } else | } | ||||
| else | |||||
| { | { | ||||
| if (newsize > curSize) | if (newsize > curSize) | ||||
| { | { | ||||
| reserve(newsize); | reserve(newsize); | ||||
| } | } | ||||
| #ifdef BT_USE_PLACEMENT_NEW | #ifdef BT_USE_PLACEMENT_NEW | ||||
| for (int i=curSize;i<newsize;i++) | for (int i = curSize; i < newsize; i++) | ||||
| { | { | ||||
| new ( &m_data[i]) T(fillData); | new (&m_data[i]) T(fillData); | ||||
| } | } | ||||
| #endif //BT_USE_PLACEMENT_NEW | #endif //BT_USE_PLACEMENT_NEW | ||||
| } | } | ||||
| m_size = newsize; | m_size = newsize; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE T& expandNonInitializing( ) | SIMD_FORCE_INLINE T& expandNonInitializing() | ||||
| { | { | ||||
| const BT_REGISTER int sz = size(); | const int sz = size(); | ||||
| if( sz == capacity() ) | if (sz == capacity()) | ||||
| { | { | ||||
| reserve( allocSize(size()) ); | reserve(allocSize(size())); | ||||
| } | } | ||||
| m_size++; | m_size++; | ||||
| return m_data[sz]; | return m_data[sz]; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE T& expand( const T& fillValue=T()) | SIMD_FORCE_INLINE T& expand(const T& fillValue = T()) | ||||
| { | { | ||||
| const BT_REGISTER int sz = size(); | const int sz = size(); | ||||
| if( sz == capacity() ) | if (sz == capacity()) | ||||
| { | { | ||||
| reserve( allocSize(size()) ); | reserve(allocSize(size())); | ||||
| } | } | ||||
| m_size++; | m_size++; | ||||
| #ifdef BT_USE_PLACEMENT_NEW | #ifdef BT_USE_PLACEMENT_NEW | ||||
| new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) | new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) | ||||
| #endif | #endif | ||||
| return m_data[sz]; | return m_data[sz]; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void push_back(const T& _Val) | SIMD_FORCE_INLINE void push_back(const T& _Val) | ||||
| { | { | ||||
| const BT_REGISTER int sz = size(); | const int sz = size(); | ||||
| if( sz == capacity() ) | if (sz == capacity()) | ||||
| { | { | ||||
| reserve( allocSize(size()) ); | reserve(allocSize(size())); | ||||
| } | } | ||||
| #ifdef BT_USE_PLACEMENT_NEW | #ifdef BT_USE_PLACEMENT_NEW | ||||
| new ( &m_data[m_size] ) T(_Val); | new (&m_data[m_size]) T(_Val); | ||||
| #else | #else | ||||
| m_data[size()] = _Val; | m_data[size()] = _Val; | ||||
| #endif //BT_USE_PLACEMENT_NEW | #endif //BT_USE_PLACEMENT_NEW | ||||
| m_size++; | m_size++; | ||||
| } | } | ||||
| /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() | /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() | ||||
| SIMD_FORCE_INLINE int capacity() const | SIMD_FORCE_INLINE int capacity() const | ||||
| { | { | ||||
| return m_capacity; | return m_capacity; | ||||
| } | } | ||||
| SIMD_FORCE_INLINE void reserve(int _Count) | SIMD_FORCE_INLINE void reserve(int _Count) | ||||
| { // determine new minimum length of allocated storage | { // determine new minimum length of allocated storage | ||||
| if (capacity() < _Count) | if (capacity() < _Count) | ||||
| { // not enough room, reallocate | { // not enough room, reallocate | ||||
| T* s = (T*)allocate(_Count); | T* s = (T*)allocate(_Count); | ||||
| copy(0, size(), s); | copy(0, size(), s); | ||||
| destroy(0,size()); | destroy(0, size()); | ||||
| deallocate(); | deallocate(); | ||||
| //PCK: added this line | //PCK: added this line | ||||
| m_ownsMemory = true; | m_ownsMemory = true; | ||||
| m_data = s; | m_data = s; | ||||
| m_capacity = _Count; | m_capacity = _Count; | ||||
| } | } | ||||
| } | } | ||||
| class less | class less | ||||
| { | { | ||||
| public: | public: | ||||
| bool operator()(const T& a, const T& b) const | |||||
| bool operator() ( const T& a, const T& b ) | |||||
| { | { | ||||
| return ( a < b ); | return (a < b); | ||||
| } | } | ||||
| }; | }; | ||||
| template <typename L> | template <typename L> | ||||
| void quickSortInternal(const L& CompareFunc,int lo, int hi) | void quickSortInternal(const L& CompareFunc, int lo, int hi) | ||||
| { | { | ||||
| // lo is the lower index, hi is the upper index | // lo is the lower index, hi is the upper index | ||||
| // of the region of array a that is to be sorted | // of the region of array a that is to be sorted | ||||
| int i=lo, j=hi; | int i = lo, j = hi; | ||||
| T x=m_data[(lo+hi)/2]; | T x = m_data[(lo + hi) / 2]; | ||||
| // partition | // partition | ||||
| do | do | ||||
| { | { | ||||
| while (CompareFunc(m_data[i],x)) | while (CompareFunc(m_data[i], x)) | ||||
| i++; | i++; | ||||
| while (CompareFunc(x,m_data[j])) | while (CompareFunc(x, m_data[j])) | ||||
| j--; | j--; | ||||
| if (i<=j) | if (i <= j) | ||||
| { | { | ||||
| swap(i,j); | swap(i, j); | ||||
| i++; j--; | i++; | ||||
| j--; | |||||
| } | } | ||||
| } while (i<=j); | } while (i <= j); | ||||
| // recursion | // recursion | ||||
| if (lo<j) | if (lo < j) | ||||
| quickSortInternal( CompareFunc, lo, j); | quickSortInternal(CompareFunc, lo, j); | ||||
| if (i<hi) | if (i < hi) | ||||
| quickSortInternal( CompareFunc, i, hi); | quickSortInternal(CompareFunc, i, hi); | ||||
| } | } | ||||
| template <typename L> | template <typename L> | ||||
| void quickSort(const L& CompareFunc) | void quickSort(const L& CompareFunc) | ||||
| { | { | ||||
| //don't sort 0 or 1 elements | //don't sort 0 or 1 elements | ||||
| if (size()>1) | if (size() > 1) | ||||
| { | { | ||||
| quickSortInternal(CompareFunc,0,size()-1); | quickSortInternal(CompareFunc, 0, size() - 1); | ||||
| } | } | ||||
| } | } | ||||
| ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ | ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ | ||||
| template <typename L> | template <typename L> | ||||
| void downHeap(T *pArr, int k, int n, const L& CompareFunc) | void downHeap(T* pArr, int k, int n, const L& CompareFunc) | ||||
| { | { | ||||
| /* PRE: a[k+1..N] is a heap */ | /* PRE: a[k+1..N] is a heap */ | ||||
| /* POST: a[k..N] is a heap */ | /* POST: a[k..N] is a heap */ | ||||
| T temp = pArr[k - 1]; | T temp = pArr[k - 1]; | ||||
| /* k has child(s) */ | /* k has child(s) */ | ||||
| while (k <= n/2) | while (k <= n / 2) | ||||
| { | { | ||||
| int child = 2*k; | int child = 2 * k; | ||||
| if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child])) | if ((child < n) && CompareFunc(pArr[child - 1], pArr[child])) | ||||
| { | { | ||||
| child++; | child++; | ||||
| } | } | ||||
| /* pick larger child */ | /* pick larger child */ | ||||
| if (CompareFunc(temp , pArr[child - 1])) | if (CompareFunc(temp, pArr[child - 1])) | ||||
| { | { | ||||
| /* move child up */ | /* move child up */ | ||||
| pArr[k - 1] = pArr[child - 1]; | pArr[k - 1] = pArr[child - 1]; | ||||
| k = child; | k = child; | ||||
| } | } | ||||
| else | else | ||||
| { | { | ||||
| break; | break; | ||||
| } | } | ||||
| } | } | ||||
| pArr[k - 1] = temp; | pArr[k - 1] = temp; | ||||
| } /*downHeap*/ | } /*downHeap*/ | ||||
| void swap(int index0,int index1) | void swap(int index0, int index1) | ||||
| { | { | ||||
| #ifdef BT_USE_MEMCPY | #ifdef BT_USE_MEMCPY | ||||
| char temp[sizeof(T)]; | char temp[sizeof(T)]; | ||||
| memcpy(temp,&m_data[index0],sizeof(T)); | memcpy(temp, &m_data[index0], sizeof(T)); | ||||
| memcpy(&m_data[index0],&m_data[index1],sizeof(T)); | memcpy(&m_data[index0], &m_data[index1], sizeof(T)); | ||||
| memcpy(&m_data[index1],temp,sizeof(T)); | memcpy(&m_data[index1], temp, sizeof(T)); | ||||
| #else | #else | ||||
| T temp = m_data[index0]; | T temp = m_data[index0]; | ||||
| m_data[index0] = m_data[index1]; | m_data[index0] = m_data[index1]; | ||||
| m_data[index1] = temp; | m_data[index1] = temp; | ||||
| #endif //BT_USE_PLACEMENT_NEW | #endif //BT_USE_PLACEMENT_NEW | ||||
| } | } | ||||
| template <typename L> | template <typename L> | ||||
| void heapSort(const L& CompareFunc) | void heapSort(const L& CompareFunc) | ||||
| { | { | ||||
| /* sort a[0..N-1], N.B. 0 to N-1 */ | /* sort a[0..N-1], N.B. 0 to N-1 */ | ||||
| int k; | int k; | ||||
| int n = m_size; | int n = m_size; | ||||
| for (k = n/2; k > 0; k--) | for (k = n / 2; k > 0; k--) | ||||
| { | { | ||||
| downHeap(m_data, k, n, CompareFunc); | downHeap(m_data, k, n, CompareFunc); | ||||
| } | } | ||||
| /* a[1..N] is now a heap */ | /* a[1..N] is now a heap */ | ||||
| while ( n>=1 ) | while (n >= 1) | ||||
| { | { | ||||
| swap(0,n-1); /* largest of a[0..n-1] */ | swap(0, n - 1); /* largest of a[0..n-1] */ | ||||
| n = n - 1; | n = n - 1; | ||||
| /* restore a[1..i-1] heap */ | /* restore a[1..i-1] heap */ | ||||
| downHeap(m_data, 1, n, CompareFunc); | downHeap(m_data, 1, n, CompareFunc); | ||||
| } | } | ||||
| } | } | ||||
| ///non-recursive binary search, assumes sorted array | ///non-recursive binary search, assumes sorted array | ||||
| int findBinarySearch(const T& key) const | int findBinarySearch(const T& key) const | ||||
| { | { | ||||
| int first = 0; | int first = 0; | ||||
| int last = size()-1; | int last = size() - 1; | ||||
| //assume sorted array | //assume sorted array | ||||
| while (first <= last) { | while (first <= last) | ||||
| { | |||||
| int mid = (first + last) / 2; // compute mid point. | int mid = (first + last) / 2; // compute mid point. | ||||
| if (key > m_data[mid]) | if (key > m_data[mid]) | ||||
| first = mid + 1; // repeat search in top half. | first = mid + 1; // repeat search in top half. | ||||
| else if (key < m_data[mid]) | else if (key < m_data[mid]) | ||||
| last = mid - 1; // repeat search in bottom half. | last = mid - 1; // repeat search in bottom half. | ||||
| else | else | ||||
| return mid; // found it. return position ///// | return mid; // found it. return position ///// | ||||
| } | } | ||||
| return size(); // failed to find key | return size(); // failed to find key | ||||
| } | } | ||||
| int findLinearSearch(const T& key) const | int findLinearSearch(const T& key) const | ||||
| { | { | ||||
| int index=size(); | int index = size(); | ||||
| int i; | int i; | ||||
| for (i=0;i<size();i++) | for (i = 0; i < size(); i++) | ||||
| { | { | ||||
| if (m_data[i] == key) | if (m_data[i] == key) | ||||
| { | { | ||||
| index = i; | index = i; | ||||
| break; | break; | ||||
| } | } | ||||
| } | } | ||||
| return index; | return index; | ||||
| } | } | ||||
| void remove(const T& key) | // If the key is not in the array, return -1 instead of 0, | ||||
| // since 0 also means the first element in the array. | |||||
| int findLinearSearch2(const T& key) const | |||||
| { | { | ||||
| int index = -1; | |||||
| int i; | |||||
| int findIndex = findLinearSearch(key); | for (i = 0; i < size(); i++) | ||||
| if (findIndex<size()) | { | ||||
| if (m_data[i] == key) | |||||
| { | { | ||||
| swap( findIndex,size()-1); | index = i; | ||||
| break; | |||||
| } | |||||
| } | |||||
| return index; | |||||
| } | |||||
| void removeAtIndex(int index) | |||||
| { | |||||
| if (index < size()) | |||||
| { | |||||
| swap(index, size() - 1); | |||||
| pop_back(); | pop_back(); | ||||
| } | } | ||||
| } | } | ||||
| void remove(const T& key) | |||||
| { | |||||
| int findIndex = findLinearSearch(key); | |||||
| removeAtIndex(findIndex); | |||||
| } | |||||
| //PCK: whole function | //PCK: whole function | ||||
| void initializeFromBuffer(void *buffer, int size, int capacity) | void initializeFromBuffer(void* buffer, int size, int capacity) | ||||
| { | { | ||||
| clear(); | clear(); | ||||
| m_ownsMemory = false; | m_ownsMemory = false; | ||||
| m_data = (T*)buffer; | m_data = (T*)buffer; | ||||
| m_size = size; | m_size = size; | ||||
| m_capacity = capacity; | m_capacity = capacity; | ||||
| } | } | ||||
| void copyFromArray(const btAlignedObjectArray& otherArray) | void copyFromArray(const btAlignedObjectArray& otherArray) | ||||
| { | { | ||||
| int otherSize = otherArray.size(); | int otherSize = otherArray.size(); | ||||
| resize (otherSize); | resize(otherSize); | ||||
| otherArray.copy(0, otherSize, m_data); | otherArray.copy(0, otherSize, m_data); | ||||
| } | } | ||||
| }; | }; | ||||
| #endif //BT_OBJECT_ARRAY__ | #endif //BT_OBJECT_ARRAY__ | ||||