Changeset View
Changeset View
Standalone View
Standalone View
intern/cycles/kernel/geom/geom_bvh_volume_all.h
- This file was added.
| /* | |||||
| * Adapted from code Copyright 2009-2010 NVIDIA Corporation, | |||||
| * and code copyright 2009-2012 Intel Corporation | |||||
| * | |||||
| * Modifications Copyright 2011-2014, Blender Foundation. | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifdef __QBVH__ | |||||
| #include "geom_qbvh_volume_all.h" | |||||
| #endif | |||||
| /* This is a template BVH traversal function for volumes, where | |||||
| * various features can be enabled/disabled. This way we can compile optimized | |||||
| * versions for each case without new features slowing things down. | |||||
| * | |||||
| * BVH_INSTANCING: object instancing | |||||
| * BVH_HAIR: hair curve rendering | |||||
| * BVH_MOTION: motion blur rendering | |||||
| * | |||||
| */ | |||||
| ccl_device uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg, | |||||
| const Ray *ray, | |||||
| Intersection *isect_array, | |||||
| const uint max_hits) | |||||
| { | |||||
| /* todo: | |||||
| * - test if pushing distance on the stack helps (for non shadow rays) | |||||
| * - separate version for shadow rays | |||||
| * - likely and unlikely for if() statements | |||||
| * - test restrict attribute for pointers | |||||
| */ | |||||
| /* traversal stack in CUDA thread-local memory */ | |||||
| int traversalStack[BVH_STACK_SIZE]; | |||||
| traversalStack[0] = ENTRYPOINT_SENTINEL; | |||||
| /* traversal variables in registers */ | |||||
| int stackPtr = 0; | |||||
| int nodeAddr = kernel_data.bvh.root; | |||||
| /* ray parameters in registers */ | |||||
| const float tmax = ray->t; | |||||
| float3 P = ray->P; | |||||
| float3 dir = bvh_clamp_direction(ray->D); | |||||
| float3 idir = bvh_inverse_direction(dir); | |||||
| int object = OBJECT_NONE; | |||||
| float isect_t = tmax; | |||||
| const uint visibility = PATH_RAY_ALL_VISIBILITY; | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| Transform ob_tfm; | |||||
| #endif | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| int num_hits_in_instance = 0; | |||||
| #endif | |||||
| uint num_hits = 0; | |||||
| isect_array->t = tmax; | |||||
| #if defined(__KERNEL_SSE2__) | |||||
| const shuffle_swap_t shuf_identity = shuffle_swap_identity(); | |||||
| const shuffle_swap_t shuf_swap = shuffle_swap_swap(); | |||||
| const ssef pn = cast(ssei(0, 0, 0x80000000, 0x80000000)); | |||||
| ssef Psplat[3], idirsplat[3]; | |||||
| shuffle_swap_t shufflexyz[3]; | |||||
| Psplat[0] = ssef(P.x); | |||||
| Psplat[1] = ssef(P.y); | |||||
| Psplat[2] = ssef(P.z); | |||||
| ssef tsplat(0.0f, 0.0f, -isect_t, -isect_t); | |||||
| gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); | |||||
| #endif | |||||
| IsectPrecalc isect_precalc; | |||||
| triangle_intersect_precalc(dir, &isect_precalc); | |||||
| /* traversal loop */ | |||||
| do { | |||||
| do { | |||||
| /* traverse internal nodes */ | |||||
| while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { | |||||
| bool traverseChild0, traverseChild1; | |||||
| int nodeAddrChild1; | |||||
| #if !defined(__KERNEL_SSE2__) | |||||
| /* Intersect two child bounding boxes, non-SSE version */ | |||||
| float t = isect_array->t; | |||||
| /* fetch node data */ | |||||
| float4 node0 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); | |||||
| float4 node1 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); | |||||
| float4 node2 = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); | |||||
| float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); | |||||
| /* intersect ray against child nodes */ | |||||
| NO_EXTENDED_PRECISION float c0lox = (node0.x - P.x) * idir.x; | |||||
| NO_EXTENDED_PRECISION float c0hix = (node0.z - P.x) * idir.x; | |||||
| NO_EXTENDED_PRECISION float c0loy = (node1.x - P.y) * idir.y; | |||||
| NO_EXTENDED_PRECISION float c0hiy = (node1.z - P.y) * idir.y; | |||||
| NO_EXTENDED_PRECISION float c0loz = (node2.x - P.z) * idir.z; | |||||
| NO_EXTENDED_PRECISION float c0hiz = (node2.z - P.z) * idir.z; | |||||
| NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); | |||||
| NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); | |||||
| NO_EXTENDED_PRECISION float c1lox = (node0.y - P.x) * idir.x; | |||||
| NO_EXTENDED_PRECISION float c1hix = (node0.w - P.x) * idir.x; | |||||
| NO_EXTENDED_PRECISION float c1loy = (node1.y - P.y) * idir.y; | |||||
| NO_EXTENDED_PRECISION float c1hiy = (node1.w - P.y) * idir.y; | |||||
| NO_EXTENDED_PRECISION float c1loz = (node2.y - P.z) * idir.z; | |||||
| NO_EXTENDED_PRECISION float c1hiz = (node2.w - P.z) * idir.z; | |||||
| NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); | |||||
| NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); | |||||
| /* decide which nodes to traverse next */ | |||||
| traverseChild0 = (c0max >= c0min); | |||||
| traverseChild1 = (c1max >= c1min); | |||||
| #else // __KERNEL_SSE2__ | |||||
| /* Intersect two child bounding boxes, SSE3 version adapted from Embree */ | |||||
| /* fetch node data */ | |||||
| const ssef *bvh_nodes = (ssef*)kg->__bvh_nodes.data + nodeAddr*BVH_NODE_SIZE; | |||||
| const float4 cnodes = ((float4*)bvh_nodes)[3]; | |||||
| /* intersect ray against child nodes */ | |||||
| const ssef tminmaxx = (shuffle_swap(bvh_nodes[0], shufflexyz[0]) - Psplat[0]) * idirsplat[0]; | |||||
| const ssef tminmaxy = (shuffle_swap(bvh_nodes[1], shufflexyz[1]) - Psplat[1]) * idirsplat[1]; | |||||
| const ssef tminmaxz = (shuffle_swap(bvh_nodes[2], shufflexyz[2]) - Psplat[2]) * idirsplat[2]; | |||||
| /* calculate { c0min, c1min, -c0max, -c1max} */ | |||||
| ssef minmax = max(max(tminmaxx, tminmaxy), max(tminmaxz, tsplat)); | |||||
| const ssef tminmax = minmax ^ pn; | |||||
| const sseb lrhit = tminmax <= shuffle<2, 3, 0, 1>(tminmax); | |||||
| /* decide which nodes to traverse next */ | |||||
| traverseChild0 = (movemask(lrhit) & 1); | |||||
| traverseChild1 = (movemask(lrhit) & 2); | |||||
| #endif // __KERNEL_SSE2__ | |||||
| nodeAddr = __float_as_int(cnodes.x); | |||||
| nodeAddrChild1 = __float_as_int(cnodes.y); | |||||
| if(traverseChild0 && traverseChild1) { | |||||
| /* both children were intersected, push the farther one */ | |||||
| #if !defined(__KERNEL_SSE2__) | |||||
| bool closestChild1 = (c1min < c0min); | |||||
| #else | |||||
| bool closestChild1 = tminmax[1] < tminmax[0]; | |||||
| #endif | |||||
| if(closestChild1) { | |||||
| int tmp = nodeAddr; | |||||
| nodeAddr = nodeAddrChild1; | |||||
| nodeAddrChild1 = tmp; | |||||
| } | |||||
| ++stackPtr; | |||||
| kernel_assert(stackPtr < BVH_STACK_SIZE); | |||||
| traversalStack[stackPtr] = nodeAddrChild1; | |||||
| } | |||||
| else { | |||||
| /* one child was intersected */ | |||||
| if(traverseChild1) { | |||||
| nodeAddr = nodeAddrChild1; | |||||
| } | |||||
| else if(!traverseChild0) { | |||||
| /* neither child was intersected */ | |||||
| nodeAddr = traversalStack[stackPtr]; | |||||
| --stackPtr; | |||||
| } | |||||
| } | |||||
| } | |||||
| /* if node is leaf, fetch triangle list */ | |||||
| if(nodeAddr < 0) { | |||||
| float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)*BVH_NODE_LEAF_SIZE); | |||||
| int primAddr = __float_as_int(leaf.x); | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| if(primAddr >= 0) { | |||||
| #endif | |||||
| const int primAddr2 = __float_as_int(leaf.y); | |||||
| const uint type = __float_as_int(leaf.w); | |||||
| bool hit; | |||||
| /* pop */ | |||||
| nodeAddr = traversalStack[stackPtr]; | |||||
| --stackPtr; | |||||
| /* primitive intersection */ | |||||
| switch(type & PRIMITIVE_ALL) { | |||||
| case PRIMITIVE_TRIANGLE: { | |||||
| /* intersect ray against primitive */ | |||||
| for(; primAddr < primAddr2; primAddr++) { | |||||
| kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); | |||||
| /* only primitives from volume object */ | |||||
| uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; | |||||
| int object_flag = kernel_tex_fetch(__object_flag, tri_object); | |||||
| if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { | |||||
| continue; | |||||
| } | |||||
| hit = triangle_intersect(kg, &isect_precalc, isect_array, P, visibility, object, primAddr); | |||||
| if(hit) { | |||||
| /* Move on to next entry in intersections array. */ | |||||
| isect_array++; | |||||
| num_hits++; | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| num_hits_in_instance++; | |||||
| #endif | |||||
| isect_array->t = isect_t; | |||||
| if(num_hits == max_hits) { | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir)); | |||||
| #else | |||||
| Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); | |||||
| float t_fac = len(transform_direction(&tfm, 1.0f/idir)); | |||||
| #endif | |||||
| for(int i = 0; i < num_hits_in_instance; i++) { | |||||
| (isect_array-i-1)->t *= t_fac; | |||||
| } | |||||
| #endif /* BVH_FEATURE(BVH_INSTANCING) */ | |||||
| return num_hits; | |||||
| } | |||||
| } | |||||
| } | |||||
| break; | |||||
| } | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| case PRIMITIVE_MOTION_TRIANGLE: { | |||||
| /* intersect ray against primitive */ | |||||
| for(; primAddr < primAddr2; primAddr++) { | |||||
| kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); | |||||
| /* only primitives from volume object */ | |||||
| uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; | |||||
| int object_flag = kernel_tex_fetch(__object_flag, tri_object); | |||||
| if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { | |||||
| continue; | |||||
| } | |||||
| hit = motion_triangle_intersect(kg, isect_array, P, dir, ray->time, visibility, object, primAddr); | |||||
| if(hit) { | |||||
| /* Move on to next entry in intersections array. */ | |||||
| isect_array++; | |||||
| num_hits++; | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| num_hits_in_instance++; | |||||
| #endif | |||||
| isect_array->t = isect_t; | |||||
| if(num_hits == max_hits) { | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| # if BVH_FEATURE(BVH_MOTION) | |||||
| float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir)); | |||||
| # else | |||||
| Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); | |||||
| float t_fac = len(transform_direction(&tfm, 1.0f/idir)); | |||||
| #endif | |||||
| for(int i = 0; i < num_hits_in_instance; i++) { | |||||
| (isect_array-i-1)->t *= t_fac; | |||||
| } | |||||
| #endif /* BVH_FEATURE(BVH_INSTANCING) */ | |||||
| return num_hits; | |||||
| } | |||||
| } | |||||
| } | |||||
| break; | |||||
| } | |||||
| #endif | |||||
| #if BVH_FEATURE(BVH_HAIR) | |||||
| case PRIMITIVE_CURVE: | |||||
| case PRIMITIVE_MOTION_CURVE: { | |||||
| /* intersect ray against primitive */ | |||||
| for(; primAddr < primAddr2; primAddr++) { | |||||
| kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); | |||||
| /* only primitives from volume object */ | |||||
| uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; | |||||
| int object_flag = kernel_tex_fetch(__object_flag, tri_object); | |||||
| if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { | |||||
| continue; | |||||
| } | |||||
| if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) | |||||
| hit = bvh_cardinal_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0); | |||||
| else | |||||
| hit = bvh_curve_intersect(kg, isect_array, P, dir, visibility, object, primAddr, ray->time, type, NULL, 0, 0); | |||||
| if(hit) { | |||||
| /* Move on to next entry in intersections array. */ | |||||
| isect_array++; | |||||
| num_hits++; | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| num_hits_in_instance++; | |||||
| #endif | |||||
| isect_array->t = isect_t; | |||||
| if(num_hits == max_hits) { | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| # if BVH_FEATURE(BVH_MOTION) | |||||
| float t_fac = len(transform_direction(&ob_tfm, 1.0f/idir)); | |||||
| # else | |||||
| Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); | |||||
| float t_fac = len(transform_direction(&tfm, 1.0f/idir)); | |||||
| #endif | |||||
| for(int i = 0; i < num_hits_in_instance; i++) { | |||||
| (isect_array-i-1)->t *= t_fac; | |||||
| } | |||||
| #endif /* BVH_FEATURE(BVH_INSTANCING) */ | |||||
| return num_hits; | |||||
| } | |||||
| } | |||||
| } | |||||
| break; | |||||
| } | |||||
| #endif | |||||
| default: { | |||||
| break; | |||||
| } | |||||
| } | |||||
| } | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| else { | |||||
| /* instance push */ | |||||
| object = kernel_tex_fetch(__prim_object, -primAddr-1); | |||||
| int object_flag = kernel_tex_fetch(__object_flag, object); | |||||
| if(object_flag & SD_OBJECT_HAS_VOLUME) { | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_tfm); | |||||
| #else | |||||
| bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t); | |||||
| #endif | |||||
| triangle_intersect_precalc(dir, &isect_precalc); | |||||
| num_hits_in_instance = 0; | |||||
| isect_array->t = isect_t; | |||||
| #if defined(__KERNEL_SSE2__) | |||||
| Psplat[0] = ssef(P.x); | |||||
| Psplat[1] = ssef(P.y); | |||||
| Psplat[2] = ssef(P.z); | |||||
| tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); | |||||
| gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); | |||||
| #endif | |||||
| ++stackPtr; | |||||
| kernel_assert(stackPtr < BVH_STACK_SIZE); | |||||
| traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; | |||||
| nodeAddr = kernel_tex_fetch(__object_node, object); | |||||
| } | |||||
| else { | |||||
| /* pop */ | |||||
| object = OBJECT_NONE; | |||||
| nodeAddr = traversalStack[stackPtr]; | |||||
| --stackPtr; | |||||
| } | |||||
| } | |||||
| } | |||||
| #endif /* FEATURE(BVH_INSTANCING) */ | |||||
| } while(nodeAddr != ENTRYPOINT_SENTINEL); | |||||
| #if BVH_FEATURE(BVH_INSTANCING) | |||||
| if(stackPtr >= 0) { | |||||
| kernel_assert(object != OBJECT_NONE); | |||||
| if(num_hits_in_instance) { | |||||
| float t_fac; | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| bvh_instance_motion_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac, &ob_tfm); | |||||
| #else | |||||
| bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac); | |||||
| #endif | |||||
| triangle_intersect_precalc(dir, &isect_precalc); | |||||
| /* Scale isect->t to adjust for instancing. */ | |||||
| for(int i = 0; i < num_hits_in_instance; i++) { | |||||
| (isect_array-i-1)->t *= t_fac; | |||||
| } | |||||
| } | |||||
| else { | |||||
| float ignore_t = FLT_MAX; | |||||
| #if BVH_FEATURE(BVH_MOTION) | |||||
| bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_tfm); | |||||
| #else | |||||
| bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t); | |||||
| #endif | |||||
| triangle_intersect_precalc(dir, &isect_precalc); | |||||
| } | |||||
| isect_t = tmax; | |||||
| isect_array->t = isect_t; | |||||
| #if defined(__KERNEL_SSE2__) | |||||
| Psplat[0] = ssef(P.x); | |||||
| Psplat[1] = ssef(P.y); | |||||
| Psplat[2] = ssef(P.z); | |||||
| tsplat = ssef(0.0f, 0.0f, -isect_t, -isect_t); | |||||
| gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz); | |||||
| #endif | |||||
| object = OBJECT_NONE; | |||||
| nodeAddr = traversalStack[stackPtr]; | |||||
| --stackPtr; | |||||
| } | |||||
| #endif /* FEATURE(BVH_MOTION) */ | |||||
| } while(nodeAddr != ENTRYPOINT_SENTINEL); | |||||
| return num_hits; | |||||
| } | |||||
| ccl_device_inline uint BVH_FUNCTION_NAME(KernelGlobals *kg, | |||||
| const Ray *ray, | |||||
| Intersection *isect_array, | |||||
| const uint max_hits) | |||||
| { | |||||
| #ifdef __QBVH__ | |||||
| if(kernel_data.bvh.use_qbvh) { | |||||
| return BVH_FUNCTION_FULL_NAME(QBVH)(kg, | |||||
| ray, | |||||
| isect_array, | |||||
| max_hits); | |||||
| } | |||||
| else | |||||
| #endif | |||||
| { | |||||
| kernel_assert(kernel_data.bvh.use_qbvh == false); | |||||
| return BVH_FUNCTION_FULL_NAME(BVH)(kg, | |||||
| ray, | |||||
| isect_array, | |||||
| max_hits); | |||||
| } | |||||
| } | |||||
| #undef BVH_FUNCTION_NAME | |||||
| #undef BVH_FUNCTION_FEATURES | |||||