Changeset View
Changeset View
Standalone View
Standalone View
intern/cycles/kernel/light/common.h
| /* SPDX-License-Identifier: Apache-2.0 | /* SPDX-License-Identifier: Apache-2.0 | ||||
| * Copyright 2011-2022 Blender Foundation */ | * Copyright 2011-2022 Blender Foundation */ | ||||
| #pragma once | #pragma once | ||||
| #include "kernel/sample/mapping.h" | #include "kernel/sample/mapping.h" | ||||
| CCL_NAMESPACE_BEGIN | CCL_NAMESPACE_BEGIN | ||||
| /* Area light sampling */ | /* Light Sample Result */ | ||||
| /* Uses the following paper: | typedef struct LightSample { | ||||
| * | float3 P; /* position on light, or direction for distant light */ | ||||
| * Carlos Urena et al. | float3 Ng; /* normal on light */ | ||||
| * An Area-Preserving Parametrization for Spherical Rectangles. | float3 D; /* direction from shading point to light */ | ||||
| * | float t; /* distance to light (FLT_MAX for distant light) */ | ||||
| * https://www.solidangle.com/research/egsr2013_spherical_rectangle.pdf | float u, v; /* parametric coordinate on primitive */ | ||||
| * | float pdf; /* pdf for selecting light and point on light */ | ||||
| * NOTE: light_p is modified when sample_coord is true. | float pdf_selection; /* pdf for selecting light */ | ||||
| */ | float eval_fac; /* intensity multiplier */ | ||||
| ccl_device_inline float rect_light_sample(float3 P, | int object; /* object id for triangle/curve lights */ | ||||
| ccl_private float3 *light_p, | int prim; /* primitive id for triangle/curve lights */ | ||||
| float3 axisu, | int shader; /* shader id */ | ||||
| float3 axisv, | int lamp; /* lamp id */ | ||||
| float randu, | int group; /* lightgroup */ | ||||
| float randv, | LightType type; /* type of light */ | ||||
| bool sample_coord) | } LightSample; | ||||
| { | |||||
| /* In our name system we're using P for the center, | |||||
| * which is o in the paper. | |||||
| */ | |||||
| float3 corner = *light_p - axisu * 0.5f - axisv * 0.5f; | |||||
| float axisu_len, axisv_len; | |||||
| /* Compute local reference system R. */ | |||||
| float3 x = normalize_len(axisu, &axisu_len); | |||||
| float3 y = normalize_len(axisv, &axisv_len); | |||||
| float3 z = cross(x, y); | |||||
| /* Compute rectangle coords in local reference system. */ | |||||
| float3 dir = corner - P; | |||||
| float z0 = dot(dir, z); | |||||
| /* Flip 'z' to make it point against Q. */ | |||||
| if (z0 > 0.0f) { | |||||
| z *= -1.0f; | |||||
| z0 *= -1.0f; | |||||
| } | |||||
| float x0 = dot(dir, x); | |||||
| float y0 = dot(dir, y); | |||||
| float x1 = x0 + axisu_len; | |||||
| float y1 = y0 + axisv_len; | |||||
| /* Compute internal angles (gamma_i). */ | |||||
| float4 diff = make_float4(x0, y1, x1, y0) - make_float4(x1, y0, x0, y1); | |||||
| float4 nz = make_float4(y0, x1, y1, x0) * diff; | |||||
| nz = nz / sqrt(z0 * z0 * diff * diff + nz * nz); | |||||
| float g0 = safe_acosf(-nz.x * nz.y); | |||||
| float g1 = safe_acosf(-nz.y * nz.z); | |||||
| float g2 = safe_acosf(-nz.z * nz.w); | |||||
| float g3 = safe_acosf(-nz.w * nz.x); | |||||
| /* Compute predefined constants. */ | |||||
| float b0 = nz.x; | |||||
| float b1 = nz.z; | |||||
| float b0sq = b0 * b0; | |||||
| float k = M_2PI_F - g2 - g3; | |||||
| /* Compute solid angle from internal angles. */ | |||||
| float S = g0 + g1 - k; | |||||
| if (sample_coord) { | |||||
| /* Compute cu. */ | |||||
| float au = randu * S + k; | |||||
| float fu = (cosf(au) * b0 - b1) / sinf(au); | |||||
| float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f); | |||||
| cu = clamp(cu, -1.0f, 1.0f); | |||||
| /* Compute xu. */ | |||||
| float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f); | |||||
| xu = clamp(xu, x0, x1); | |||||
| /* Compute yv. */ | |||||
| float z0sq = z0 * z0; | |||||
| float y0sq = y0 * y0; | |||||
| float y1sq = y1 * y1; | |||||
| float d = sqrtf(xu * xu + z0sq); | |||||
| float h0 = y0 / sqrtf(d * d + y0sq); | |||||
| float h1 = y1 / sqrtf(d * d + y1sq); | |||||
| float hv = h0 + randv * (h1 - h0), hv2 = hv * hv; | |||||
| float yv = (hv2 < 1.0f - 1e-6f) ? (hv * d) / sqrtf(1.0f - hv2) : y1; | |||||
| /* Transform (xu, yv, z0) to world coords. */ | |||||
| *light_p = P + xu * x + yv * y + z0 * z; | |||||
| } | |||||
| /* return pdf */ | /* Utilities */ | ||||
| if (S != 0.0f) | |||||
| return 1.0f / S; | |||||
| else | |||||
| return 0.0f; | |||||
| } | |||||
| ccl_device_inline float3 ellipse_sample(float3 ru, float3 rv, float randu, float randv) | ccl_device_inline float3 ellipse_sample(float3 ru, float3 rv, float randu, float randv) | ||||
| { | { | ||||
| to_unit_disk(&randu, &randv); | to_unit_disk(&randu, &randv); | ||||
| return ru * randu + rv * randv; | return ru * randu + rv * randv; | ||||
| } | } | ||||
| ccl_device float3 disk_light_sample(float3 v, float randu, float randv) | ccl_device float3 disk_light_sample(float3 v, float randu, float randv) | ||||
| { | { | ||||
| float3 ru, rv; | float3 ru, rv; | ||||
| make_orthonormals(v, &ru, &rv); | make_orthonormals(v, &ru, &rv); | ||||
| return ellipse_sample(ru, rv, randu, randv); | return ellipse_sample(ru, rv, randu, randv); | ||||
| } | } | ||||
| ccl_device float3 distant_light_sample(float3 D, float radius, float randu, float randv) | ccl_device float lamp_light_pdf(const float3 Ng, const float3 I, float t) | ||||
| { | |||||
| return normalize(D + disk_light_sample(D, randu, randv) * radius); | |||||
| } | |||||
| ccl_device float3 | |||||
| sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv) | |||||
| { | |||||
| return disk_light_sample(normalize(P - center), randu, randv) * radius; | |||||
| } | |||||
| ccl_device float spot_light_attenuation(float3 dir, float spot_angle, float spot_smooth, float3 N) | |||||
| { | |||||
| float attenuation = dot(dir, N); | |||||
| if (attenuation <= spot_angle) { | |||||
| attenuation = 0.0f; | |||||
| } | |||||
| else { | |||||
| float t = attenuation - spot_angle; | |||||
| if (t < spot_smooth && spot_smooth != 0.0f) | |||||
| attenuation *= smoothstepf(t / spot_smooth); | |||||
| } | |||||
| return attenuation; | |||||
| } | |||||
| ccl_device float light_spread_attenuation(const float3 D, | |||||
| const float3 lightNg, | |||||
| const float tan_spread, | |||||
| const float normalize_spread) | |||||
| { | |||||
| /* Model a soft-box grid, computing the ratio of light not hidden by the | |||||
| * slats of the grid at a given angle. (see D10594). */ | |||||
| const float cos_a = -dot(D, lightNg); | |||||
| const float sin_a = safe_sqrtf(1.0f - sqr(cos_a)); | |||||
| const float tan_a = sin_a / cos_a; | |||||
| return max((1.0f - (tan_spread * tan_a)) * normalize_spread, 0.0f); | |||||
| } | |||||
| /* Compute subset of area light that actually has an influence on the shading point, to | |||||
| * reduce noise with low spread. */ | |||||
| ccl_device bool light_spread_clamp_area_light(const float3 P, | |||||
| const float3 lightNg, | |||||
| ccl_private float3 *lightP, | |||||
| ccl_private float3 *axisu, | |||||
| ccl_private float3 *axisv, | |||||
| const float tan_spread) | |||||
| { | |||||
| /* Closest point in area light plane and distance to that plane. */ | |||||
| const float3 closest_P = P - dot(lightNg, P - *lightP) * lightNg; | |||||
| const float t = len(closest_P - P); | |||||
| /* Radius of circle on area light that actually affects the shading point. */ | |||||
| const float radius = t / tan_spread; | |||||
| /* TODO: would be faster to store as normalized vector + length, also in rect_light_sample. */ | |||||
| float len_u, len_v; | |||||
| const float3 u = normalize_len(*axisu, &len_u); | |||||
| const float3 v = normalize_len(*axisv, &len_v); | |||||
| /* Local uv coordinates of closest point. */ | |||||
| const float closest_u = dot(u, closest_P - *lightP); | |||||
| const float closest_v = dot(v, closest_P - *lightP); | |||||
| /* Compute rectangle encompassing the circle that affects the shading point, | |||||
| * clamped to the bounds of the area light. */ | |||||
| const float min_u = max(closest_u - radius, -len_u * 0.5f); | |||||
| const float max_u = min(closest_u + radius, len_u * 0.5f); | |||||
| const float min_v = max(closest_v - radius, -len_v * 0.5f); | |||||
| const float max_v = min(closest_v + radius, len_v * 0.5f); | |||||
| /* Skip if rectangle is empty. */ | |||||
| if (min_u >= max_u || min_v >= max_v) { | |||||
| return false; | |||||
| } | |||||
| /* Compute new area light center position and axes from rectangle in local | |||||
| * uv coordinates. */ | |||||
| const float new_center_u = 0.5f * (min_u + max_u); | |||||
| const float new_center_v = 0.5f * (min_v + max_v); | |||||
| const float new_len_u = max_u - min_u; | |||||
| const float new_len_v = max_v - min_v; | |||||
| *lightP = *lightP + new_center_u * u + new_center_v * v; | |||||
| *axisu = u * new_len_u; | |||||
| *axisv = v * new_len_v; | |||||
| return true; | |||||
| } | |||||
| ccl_device float lamp_light_pdf(KernelGlobals kg, const float3 Ng, const float3 I, float t) | |||||
| { | { | ||||
| float cos_pi = dot(Ng, I); | float cos_pi = dot(Ng, I); | ||||
| if (cos_pi <= 0.0f) | if (cos_pi <= 0.0f) | ||||
| return 0.0f; | return 0.0f; | ||||
| return t * t / cos_pi; | return t * t / cos_pi; | ||||
| } | } | ||||
| CCL_NAMESPACE_END | CCL_NAMESPACE_END | ||||